A Parameterization for the Effects of Ozone on the Wave Driving Exerted by Equatorial Waves in the Stratosphere

Dustin F. P. Grogan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Dustin F. P. Grogan in
Current site
Google Scholar
PubMed
Close
,
Terrence R. Nathan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
,
Robert S. Echols Physics Department, California Polytechnic State University, San Luis Obispo, California

Search for other papers by Robert S. Echols in
Current site
Google Scholar
PubMed
Close
, and
Eugene C. Cordero Department of Meteorology and Climate Science, San José State University, San José, California

Search for other papers by Eugene C. Cordero in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An equatorial β-plane model of the tropical stratosphere is used to examine the effects of ozone on Kelvin, Rossby–gravity, equatorial Rossby, inertia–gravity, and smaller-scale gravity waves. The model is composed of coupled equations for wind, temperature, and ozone volume mixing ratio, which are linearized about a zonally averaged background state. Using the Wentzel–Kramers–Brillouin (WKB) formalism, equations are obtained for the vertical spatial scale, spatial damping rate, and amplitude of the waves. These equations yield an analytical expression for the ozone-modified wave driving of the zonal-mean circulation. The expression for the wave driving provides an efficient parameterization that can be implemented into models that are unable to spontaneously generate the ozone-modified, convectively coupled waves that drive the quasi-biennial and semiannual oscillations of the tropical stratosphere.

The effects of ozone on the wave driving, which are strongly modulated by the Doppler-shifted frequency, are maximized in the upper stratosphere, where ozone photochemistry and vertical ozone advection combine to augment Newtonian cooling. The ozone causes a contraction in spatial scale and an increase in the spatial damping rate. In the midstratosphere to lower mesosphere, the ozone-induced increase in wave driving is about 10%–30% for all wave types, but it can be as large as about 80% over narrow altitude regions and for specific wave types. In the dynamically controlled lower stratosphere, vertical ozone advection dominates over meridional ozone advection and opposes Newtonian cooling, causing, on average, a 10%–15% reduction in the damping rate.

Corresponding author address: Dustin Grogan, Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Avenue, Davis, CA 95616-8627. E-mail: dfgrogan@ucdavis.edu

Abstract

An equatorial β-plane model of the tropical stratosphere is used to examine the effects of ozone on Kelvin, Rossby–gravity, equatorial Rossby, inertia–gravity, and smaller-scale gravity waves. The model is composed of coupled equations for wind, temperature, and ozone volume mixing ratio, which are linearized about a zonally averaged background state. Using the Wentzel–Kramers–Brillouin (WKB) formalism, equations are obtained for the vertical spatial scale, spatial damping rate, and amplitude of the waves. These equations yield an analytical expression for the ozone-modified wave driving of the zonal-mean circulation. The expression for the wave driving provides an efficient parameterization that can be implemented into models that are unable to spontaneously generate the ozone-modified, convectively coupled waves that drive the quasi-biennial and semiannual oscillations of the tropical stratosphere.

The effects of ozone on the wave driving, which are strongly modulated by the Doppler-shifted frequency, are maximized in the upper stratosphere, where ozone photochemistry and vertical ozone advection combine to augment Newtonian cooling. The ozone causes a contraction in spatial scale and an increase in the spatial damping rate. In the midstratosphere to lower mesosphere, the ozone-induced increase in wave driving is about 10%–30% for all wave types, but it can be as large as about 80% over narrow altitude regions and for specific wave types. In the dynamically controlled lower stratosphere, vertical ozone advection dominates over meridional ozone advection and opposes Newtonian cooling, causing, on average, a 10%–15% reduction in the damping rate.

Corresponding author address: Dustin Grogan, Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, 1 Shields Avenue, Davis, CA 95616-8627. E-mail: dfgrogan@ucdavis.edu
Save
  • Albers, J. R., and T. R. Nathan, 2012: Pathways for communicating the effects of stratospheric ozone to the polar vortex: Role of zonally asymmetric ozone. J. Atmos. Sci., 69, 785801.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Loevy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229.

  • Bender, C. M., and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. International Series in Pure and Applied Mathematics, Vol. 1, McGraw-Hill, 593 pp.

  • Butchart, N., and Coauthors, 2010: Chemistry–Climate Model simulations of twenty-first century stratospheric climate and circulations changes. J. Climate, 23, 53495374.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and T. R. Nathan, 2000: The influence of wave– and zonal mean–ozone feedbacks on the quasi-biennial oscillation. J. Atmos. Sci., 57, 34263442.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and T. R. Nathan, 2005: A new pathway for communicating the 11-year solar cycle to the QBO. Geophys. Res. Lett., 32, L18805, doi:10.1029/2005GL023696.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., T. R. Nathan, and R. S. Echols, 1998: An analytical study of ozone feedbacks on Kelvin and Rossby–gravity waves: Effects on the QBO. J. Atmos. Sci., 55, 10511062.

    • Search Google Scholar
    • Export Citation
  • Coughlin, K., and K.-K. Tung, 2001: QBO signal found at the extratropical surface through northern annular modes. Geophys. Res. Lett., 28, 45634566.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillations. J. Geophys. Res., 102 (D22), 26 05326 076.

  • Echols, R. S., and T. R. Nathan, 1996: Effect of ozone heating on forced equatorial Kelvin waves. J. Atmos. Sci., 53, 263275.

  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109, D20103, doi:10.1029/2004JD004752.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 846869.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, J. C. Collie, C. L. Hepplewhite, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2011: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in the stratosphere and mesosphere. J. Geophys. Res., 116, D19107, doi:10.1029/2011JD015821.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, doi:10.1029/2006JD008332.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1982: A parameterization of scale-dependent radiative damping rates in the middle atmosphere. J. Atmos. Sci., 39, 11411152.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., S. Chandra, M. R. Schoeberl, and J. J. Barnett, 1988: Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km. NASA Tech. Memo. NASA-TM-100697, 91 pp.

  • Gray, L. J., S. Crooks, C. Pascoe, S. Sparrow, and M. Palmer, 2004: Solar and QBO influences on the timing of stratospheric sudden warmings. J. Atmos. Sci., 61, 27772796.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., 1985: A fast method for calculating scale-dependent photochemical acceleration in dynamical models of the stratosphere. Quart. J. Roy. Meteor. Soc., 111, 10271038.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J. Atmos. Sci., 58, 32713292.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1978: A note concerning the effect of varying extinction on radiative-photochemical relaxation. J. Atmos. Sci., 35, 11251130.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol. Terr. Phys., 59, 387400.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and S. Yoden, 2010: On the approximation of local and linear radiative damping in the middle atmosphere. J. Atmos. Sci., 67, 20702085.

    • Search Google Scholar
    • Export Citation
  • Jones, A., and Coauthors, 2009: Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos. Chem. Phys., 9, 60556075.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., M. Takahashi, K. Sato, and S. P. Alexander, 2009: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res., 114, D01102, doi:10.1029/2008JD010374.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963380.

    • Search Google Scholar
    • Export Citation
  • Keating, G. M., and D. F. Young, 1985: Interim reference ozone models for the middle atmosphere. Atmospheric Structure and Its Variation in the Region 20 to 120 km: Draft of a New Reference Middle Atmosphere, K. Labitzk, J. J. Barnett, and B. Edwards, Eds., Vol. 16, Middle Atmosphere Program: Handbook for MAP, SCOSTEP, University of Illinois, 318 pp.

  • Lamarque, J.-F., and S. Solomon, 2010: Impact of changes in climate and halocarbons on recent lower stratosphere ozone and temperature trends. J. Climate, 23, 25992611.

    • Search Google Scholar
    • Export Citation
  • Leovy, C. B., 1966: Photochemical destabilization of gravity waves near the mesosphere. J. Atmos. Sci., 23, 223232.

  • Lindzen, R., and R. Goody, 1965: Radiative and photochemical processes in mesospheric dynamics: Part I, models for radiative and photochemical processes. J. Atmos. Sci., 22, 341348.

    • Search Google Scholar
    • Export Citation
  • Lu, H., M. P. Baldwin, L. J. Gray, and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D101114, doi:10.1029/2007JD009647.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542.

  • McPeters, R. D., D. F. Heather, and P. K. Bhartia, 1984: Average ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. J. Geophys. Res., 89 (D4), 51995214.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and L. Li, 1991: Linear stability of free planetary waves in the presence of radiative-photochemical feedbacks. J. Atmos Sci., 48, 18371855.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and E. C. Cordero, 2007: An ozone-modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., J. R. Albers, and E. C. Cordero, 2011: Role of wave-mean flow interaction in sun-climate connections: Historical overview and some new interpretations and results. J. Atmos. Sol. Terr. Phys., 73, 15941605.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2007: A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data. J. Geophys. Res., 112, D06313, doi:10.1029/2006JD007339.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., and M. Deushi, 2005: Radiative effect of ozone on the quasi-biennial oscillation in the equatorial stratosphere. Geophys. Res. Lett., 32, L24802, doi:10.1029/2005GL023433.

    • Search Google Scholar
    • Export Citation
  • Strobel, D., 1978: Parameterization of the atmospheric heating rate from 15 to 120 km due to O2 and O3 absorption of solar radiation. J. Geophys. Res., 83, 62256230.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1999: Simulation of the quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 26, 13071310.

  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006a: Equatorial waves in the lower stratosphere. I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132, 177194.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. R. Holton, 1986: Photochemical damping of inertio–gravity waves. J. Atmos. Sci., 43, 25782584.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 35 1
PDF Downloads 77 45 1