Adjoint Sensitivity and Predictability of Tropical Cyclogenesis

James D. Doyle Naval Research Laboratory, Monterey, California

Search for other papers by James D. Doyle in
Current site
Google Scholar
PubMed
Close
,
Carolyn A. Reynolds Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn A. Reynolds in
Current site
Google Scholar
PubMed
Close
,
Clark Amerault Naval Research Laboratory, Monterey, California

Search for other papers by Clark Amerault in
Current site
Google Scholar
PubMed
Close
, and
Jonathan Moskaitis Naval Research Laboratory, Monterey, California

Search for other papers by Jonathan Moskaitis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sensitivity of tropical cyclogenesis and subsequent intensification is explored by applying small perturbations to the initial state in the presence of organized mesoscale convection and synoptic-scale forcing using the adjoint and tangent linear models for the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). The forward, adjoint, and tangent linear models are used to compare and contrast predictability characteristics for the disturbance that became Typhoon Nuri and a nondeveloping organized convective cluster in the western Pacific during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Tropical Cyclone Structure-2008 (TCS-08) experiments.

The adjoint diagnostics indicate that the intensity (e.g., maximum surface wind speed, minimum surface pressure) of a tropical disturbance is very sensitive to perturbations in the moisture and temperature fields and to a lesser degree the wind fields. The highest-resolution adjoint simulations (grid increment of 13 km) indicate that the most efficient intensification is through moistening in the lower and middle levels and heating in banded regions that are coincident with vorticity maxima in the initial state. Optimal adjoint perturbations exhibit rapid growth for the Nuri case and only modest growth for the nondeveloping system. The adjoint results suggest that Nuri was near the threshold for development, indicative of low predictability. The low-level sensitivity maximum and tendency for optimal perturbation growth to extend vertically through the troposphere are consistent with a “bottom up” development process of TC genesis, although a secondary midlevel sensitivity maximum is present as well. Growth originates at small scales and projects onto the scale of the vortex, a manifestation of perturbations that project onto organized convection embedded in regions of cyclonic vorticity.

Corresponding author address: James D. Doyle, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. E-mail: james.doyle@nrlmry.navy.mil

Abstract

The sensitivity of tropical cyclogenesis and subsequent intensification is explored by applying small perturbations to the initial state in the presence of organized mesoscale convection and synoptic-scale forcing using the adjoint and tangent linear models for the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). The forward, adjoint, and tangent linear models are used to compare and contrast predictability characteristics for the disturbance that became Typhoon Nuri and a nondeveloping organized convective cluster in the western Pacific during The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Tropical Cyclone Structure-2008 (TCS-08) experiments.

The adjoint diagnostics indicate that the intensity (e.g., maximum surface wind speed, minimum surface pressure) of a tropical disturbance is very sensitive to perturbations in the moisture and temperature fields and to a lesser degree the wind fields. The highest-resolution adjoint simulations (grid increment of 13 km) indicate that the most efficient intensification is through moistening in the lower and middle levels and heating in banded regions that are coincident with vorticity maxima in the initial state. Optimal adjoint perturbations exhibit rapid growth for the Nuri case and only modest growth for the nondeveloping system. The adjoint results suggest that Nuri was near the threshold for development, indicative of low predictability. The low-level sensitivity maximum and tendency for optimal perturbation growth to extend vertically through the troposphere are consistent with a “bottom up” development process of TC genesis, although a secondary midlevel sensitivity maximum is present as well. Growth originates at small scales and projects onto the scale of the vortex, a manifestation of perturbations that project onto organized convection embedded in regions of cyclonic vorticity.

Corresponding author address: James D. Doyle, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. E-mail: james.doyle@nrlmry.navy.mil
Save
  • Amerault, C., X. Zou, and J. D. Doyle, 2008: Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon. Wea. Rev., 136, 21202132.

    • Search Google Scholar
    • Export Citation
  • Barker, E. H., 1992: Design of the navy’s multivariate optimum interpolation analysis system. Wea. Forecasting, 7, 220231.

  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and J. A. Bartlo, 1991: Tropical storm formation in a baroclinic environment. Mon. Wea. Rev., 119, 19792013.

  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 13971413.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., V. F. Morris, and J. M. Wallace, 1970: A statistical study of easterly waves in the western Pacific: July–December 1964. J. Atmos. Sci., 27, 195201.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 24012426.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2004: The TT problem: Forecasting the tropical transition of cyclones. Bull. Amer. Meteor. Soc., 85, 16571662.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2006: The formation of Hurricane Humberto (2001): The importance of extra-tropical precursors. Quart. J. Roy. Meteor. Soc., 132, 20552085.

    • Search Google Scholar
    • Export Citation
  • Dengler, K., and M. J. Reeder, 1997: The effects of convection and baroclinicity on the motion of tropical-cyclone-like vortices. Quart. J. Roy. Meteor. Soc., 123, 699725.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., C. A. Reynolds, and C. Amerault, 2011: Diagnosing tropical cyclone sensitivity. Comput. Sci. Eng., 13, 3139.

  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. Discuss., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209231.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591.

  • Errico, R. M., and K. D. Raeder, 1999: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc., 125, 169195.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., K. D. Raeder, and M. Ehrendorfer, 2004: Singular vectors for moisture-measuring norms. Quart. J. Roy. Meteor. Soc., 130, 963987.

    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314.

  • Gall, J. S., and W. M. Frank, 2010: The role of equatorial Rossby waves in tropical cyclogenesis. Part II: Idealized simulations in a monsoon trough environment. Mon. Wea. Rev., 138, 13831398.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: A global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1985: Tropical cyclone global climatology. WMO Tech. Document WMO/TD-72, Vol. 1, 3–19.

  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and T. E. Rosmond, 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815.

    • Search Google Scholar
    • Export Citation
  • Islam, S., R. L. Bras, and K. A. Emanuel, 1993: Predictability of mesoscale rainfall in the tropics. J. Appl. Meteor., 32, 297310.

  • Klemp, J., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

  • Lander, M. A., 1994: Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640654.

    • Search Google Scholar
    • Export Citation
  • Lang, S. T. K., S. C. Jones, M. Leutbecher, M. S. Peng, and C. A. Reynolds, 2012: Sensitivity, structure, and dynamics of singular vectors associated with Hurricane Helene (2006). J. Atmos. Sci., 69, 675694.

    • Search Google Scholar
    • Export Citation
  • Le Dimet, F., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97110.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mahfouf, J., 1999: Influence of physical processes of the tangent-linear approximation. Tellus, 51A, 147166.

  • Majumdar, S. J., S. D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng, and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 134, 23542372.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 120.

  • Molinari, J., 1985: General form of Kuo’s cumulus parameterization. Mon. Wea. Rev., 113, 14111416.

  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Nolan, D. S., and B. F. Farrell, 1999: The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci., 56, 39373962.

    • Search Google Scholar
    • Export Citation
  • Oortwijn, J., and J. Barkmeijer, 1995: Perturbations that optimally trigger weather regimes. J. Atmos. Sci., 52, 39323944.

  • Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 23082328.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., J. A. Ridout, and T. F. Hogan, 2004: Recent modifications of the Emanuel convective scheme in the Naval Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 132, 12541268.

    • Search Google Scholar
    • Export Citation
  • Penny, A. B., S. Malvig, and P. Harr, 2010: The role of multiple mesoscale convective systems in a nondeveloping tropical disturbance observed during the Tropical Cyclone Structure-2008 (TCS-08) field experiment. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 11A.5. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_169024.htm.]

  • Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077.

  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., M. S. Peng, and J.-H. Chen, 2009: Recurving tropical cyclones: Singular vector sensitivity and downstream impacts. Mon. Wea. Rev., 137, 13201337.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., J. D. Doyle, R. Hodur, and H. Jin, 2010: Naval Research Laboratory multiscale targeting guidance for T-PARC and TCS-08. Wea. Forecasting, 25, 546564.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917925.

  • Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.

  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Shen, B.-W., W.-K. Tao, W. K. Lau, and R. Atlas, 2010: Predicting tropical cyclogenesis with a global mesoscale model: Hierarchical multiscale interactions during the formation of Tropical Cyclone Nargis (2008). J. Geophys. Res., 115, D14102, doi:10.1029/2009JD013140.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. A. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778.

  • Sippel, J. A., J. W. Nielsen-Gammon, and S. E. Allen, 2006: The multiple-vortex nature of tropical cyclogenesis. Mon. Wea. Rev., 134, 17961814.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., N. E. Davidson, and M. T. Montgomery, 2007: Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms. J. Atmos. Sci., 64, 31953213.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and R. M. Errico, 1993: Linearization and adjoint of parameterized moist diabatic process. Tellus, 45A, 493510.

  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) – An overview. Bull. Amer. Meteor. Soc., 86, 787790.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., D. S. Nolan, M. Iskandarani, S. J. Majumdar, M. S. Peng, and C. A. Reynolds, 2011: Singular vectors for tropical cyclone–like vortices in a nondivergent barotropic framework. J. Atmos. Sci., 68, 22732291.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961.

  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185.

  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2006: A multistage error-growth conceptual model for mesoscale predictability. Bull. Amer. Meteor. Soc., 87, 287288.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594.

    • Search Google Scholar
    • Export Citation
  • Zou, X., I. M. Navon, and J. Sela, 1993: Control of gravitational oscillations in variational data assimilation. Mon. Wea. Rev., 121, 272289.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 367 128 15
PDF Downloads 335 117 18