Vertical Velocity and Microphysical Distributions Related to Rapid Intensification in a Simulation of Hurricane Dennis (2005)

Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
,
Matthew S. Gilmore Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Matthew S. Gilmore in
Current site
Google Scholar
PubMed
Close
,
Stephen W. Nesbitt Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Stephen W. Nesbitt in
Current site
Google Scholar
PubMed
Close
, and
Tsung-Lin Hsieh Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Tsung-Lin Hsieh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 1-km Weather Research and Forecasting model simulation of Hurricane Dennis was used to identify precursors in vertical velocity and latent heating distributions to rapid intensification (RI). Although the observed structure qualitatively replicated data obtained during P-3 and Earth Resources-2 (ER-2) flights, the simulated reflectivity was overestimated. During the 6 h preceding RI, defined as 0000 UTC 8 July 2005 close to the time of simulated maximum central pressure deepening, the asymmetric convection transformed into an eyewall with the maximum 10-m wind speed increasing by 16 m s−1.

Contour by frequency altitude diagrams showed unique changes in the breadth of simulated vertical velocity (w) distributions before and after RI. Outliers of w distributions at 14 km preceded RI onset, whereas the increase in w outliers at 6 km lagged it. Prior to RI there was an increase in the upward flux of hydrometeors between 10 and 15 km, with increased contributions from w > 6 m s−1. Increases in lower-level updraft airmass fluxes did not lead RI, but the 14-km positive w outliers were better indicators of RI onset than positive w averages. The area of convective bursts did not strongly increase before RI, but it continually increased after RI. Latent heating was dominated by contributions from w < 2 m s−1, meaning increases in positive w outliers before RI did not cause the increase in latent heating seen during RI. The location of convective bursts and outliers of positive and negative w distributions contracted toward the eye as the simulated Dennis intensified.

Corresponding author address: Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@atmos.uiuc.edu

Abstract

A 1-km Weather Research and Forecasting model simulation of Hurricane Dennis was used to identify precursors in vertical velocity and latent heating distributions to rapid intensification (RI). Although the observed structure qualitatively replicated data obtained during P-3 and Earth Resources-2 (ER-2) flights, the simulated reflectivity was overestimated. During the 6 h preceding RI, defined as 0000 UTC 8 July 2005 close to the time of simulated maximum central pressure deepening, the asymmetric convection transformed into an eyewall with the maximum 10-m wind speed increasing by 16 m s−1.

Contour by frequency altitude diagrams showed unique changes in the breadth of simulated vertical velocity (w) distributions before and after RI. Outliers of w distributions at 14 km preceded RI onset, whereas the increase in w outliers at 6 km lagged it. Prior to RI there was an increase in the upward flux of hydrometeors between 10 and 15 km, with increased contributions from w > 6 m s−1. Increases in lower-level updraft airmass fluxes did not lead RI, but the 14-km positive w outliers were better indicators of RI onset than positive w averages. The area of convective bursts did not strongly increase before RI, but it continually increased after RI. Latent heating was dominated by contributions from w < 2 m s−1, meaning increases in positive w outliers before RI did not cause the increase in latent heating seen during RI. The location of convective bursts and outliers of positive and negative w distributions contracted toward the eye as the simulated Dennis intensified.

Corresponding author address: Greg McFarquhar, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory Street, MC 223, Urbana, IL 61801. E-mail: mcfarq@atmos.uiuc.edu
Save
  • Aberson, S. D., 2008: An alternative tropical cyclone intensity forecast verification technique. Wea. Forecasting, 23, 13041310.

  • Adler, R. F., and E. B. Rodgers, 1977: Satellite-observed latent heat release in tropical cyclones. Mon. Wea. Rev., 105, 956963.

  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989.

    • Search Google Scholar
    • Export Citation
  • Beven, J., 2005: Tropical cyclone report: Hurricane Dennis, 4 –13 July 2005. National Hurricane Center Rep., 25 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL042005_Dennis.pdf.]

  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radar velocities. J. Atmos. Sci., 53, 18871909.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., K. R. Quinlan, and D. M. Mach, 2010: Intense convection observed by NASA ER-2 in Hurricane Emily (2005). Mon. Wea. Rev., 138, 765780.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 19902005.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 2005: An efficient mixed-phase cloud and precipitation scheme for use in operational NWP models. Eos, Trans. Amer. Geophys. Union,86 (Spring Meeting Suppl.), Abstract A42A-02.

  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477494.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., L. M. Leslie, E. R. Mansell, J. M. Straka, D. R. MacGorman, and C. Ziegler, 2007: A high-resolution simulation of the microphysics and electrification in an idealized hurricane-like vortex. Meteor. Atmos. Phys., 98, 1333, doi:10.1007/s00703-006-0237-0.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., R. F. Rogers, F. D. Marks, and D. S. Nolan, 2009: The impact of horizontal grid spacing on the microphysical and kinematic structures of strong tropical cyclones simulated with the WRF–ARW model. Mon. Wea. Rev., 137, 37173743.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654.

    • Search Google Scholar
    • Export Citation
  • Halverson, J., and Coauthors, 2007: NASA’s Tropical Cloud Systems and Processes experiment: Investigating tropical cyclogenesis and hurricane intensity change. Bull. Amer. Meteor. Soc., 88, 867882.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L07805, doi:10.1029/2011GL047010.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031521.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kakar, R., F. Marks Jr., G. McFarquhar, and R. Hood, 2006: Preface. J. Atmos. Sci., 63, 34.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and F. C. Dougherty, 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon. Wea. Rev., 134, 19872008.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 20302045.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., and J. M. Lord, 1988: Vertical velocity structures in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 45, 14531461.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930.

  • McFarquhar, G. M., and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., H. Zhang, G. Heymsfield, R. Hood, J. Dudhia, J. B. Halverson, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127150.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iaconno, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasi-geostrophic model. J. Atmos. Sci., 55, 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Nguyen, V. S., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vorticies. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405.

    • Search Google Scholar
    • Export Citation
  • Price, C., M. Asfur, and Y. Yair, 2009: Maximum hurricane intensity preceded by increase in lightning frequency. Nat. Geosci., 2, 329–332, doi:10.1038/ngeo477.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 33513365.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, V. M. Karyamupudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environment influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 12291247.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., M. L. Black, S. S. Chen, and R. A. Black, 2007: An evaluation of microphysics fields from mesoscale model simulations of tropical cyclones. Part I: Comparisons with observations. J. Atmos. Sci., 64, 18111834.

    • Search Google Scholar
    • Export Citation
  • Schneider, E., G. M. McFarquhar, B. F. Jewett, M. Gilmore, R. E. Hood, and G. M. Heymsfield, 2006 : Evaluation of cloud microphysical processes and their implications for intensification in numerical model simulations of Hurricane Dennis (2005). [Available online at http://ams.confex.com/ams/Madison2006/techprogram/paper_113604.htm.]

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and G. M. Barnes, 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., R. E. Hood, F. J. LaFontaine, E. A. Smith, R. Platt, J. Galliano, V. L. Griffin, and E. Lobl, 1994: High-resolution imaging of rain systems with the advanced microwave precipitation radiometer. J. Atmos. Oceanic Technol., 11, 849857.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434.

  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546.

    • Search Google Scholar
    • Export Citation
  • Thomas, J. N., N. N. Solorzano, S. A. Cummer, and R. H. Holzworth, 2010: Polarity and energetics of inner core lightning in three intense North Atlantic hurricanes. J. Geophys. Res., 115, A00E15, doi:10.1029/2009JA014777.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350.

  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 27452763.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 99 6
PDF Downloads 204 57 4