Assessment of Aerosol Modes Used in the MODIS Ocean Aerosol Retrieval

Jiacheng Wang College of Physics and Electronic Information, Fuyang University, Fuyang, China

Search for other papers by Jiacheng Wang in
Current site
Google Scholar
PubMed
Close
,
Qiang Zhao Key Laboratory of General Optical Calibration and Characterization Techniques, and Remote Sensing Laboratory, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei, China

Search for other papers by Qiang Zhao in
Current site
Google Scholar
PubMed
Close
,
Shengcheng Cui Key Laboratory of General Optical Calibration and Characterization Techniques, and Remote Sensing Laboratory, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei, China

Search for other papers by Shengcheng Cui in
Current site
Google Scholar
PubMed
Close
, and
Chengjie Zhu Key Laboratory of General Optical Calibration and Characterization Techniques, and Remote Sensing Laboratory, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei, China

Search for other papers by Chengjie Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (MODIS) ocean aerosol algorithm, and the results show that 1) the standard deviation values of three fine aerosol modes (0.6) and one dustlike aerosol mode (0.8) are much higher than the corresponding statistical AERONET modal values (0.45 and 0.6, respectively). The values of three sea salt aerosol modes (0.6) are somewhat lower than the corresponding statistical AERONET modal value (0.675). 2) The number median radius of the current fine and dustlike aerosol modes cannot span the dynamic range of corresponding aerosol distribution properly. 3) AERONET products show that the standard deviation and the number median radius exhibit an obvious negative correlation, especially for sea salt and dustlike aerosol modes. According to this, a refinement of the current aerosol modes is made. These revised modes are used in a version of the MODIS retrieval over ocean. Compared with the current aerosol modes: 1) more retrieved aerosol optical depths (AODs) from the revised aerosol modes lie within the expected error bars and 2) the linear regression lines of the retrievals from the revised aerosol modes and AERONET are closer to the 1:1 line.

Corresponding author address: Jiacheng Wang, College of Physics and Electronic Information, Fuyang University, Fuyang 236037, China. E-mail: shanqiangw@yahoo.com.cn

Abstract

Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (MODIS) ocean aerosol algorithm, and the results show that 1) the standard deviation values of three fine aerosol modes (0.6) and one dustlike aerosol mode (0.8) are much higher than the corresponding statistical AERONET modal values (0.45 and 0.6, respectively). The values of three sea salt aerosol modes (0.6) are somewhat lower than the corresponding statistical AERONET modal value (0.675). 2) The number median radius of the current fine and dustlike aerosol modes cannot span the dynamic range of corresponding aerosol distribution properly. 3) AERONET products show that the standard deviation and the number median radius exhibit an obvious negative correlation, especially for sea salt and dustlike aerosol modes. According to this, a refinement of the current aerosol modes is made. These revised modes are used in a version of the MODIS retrieval over ocean. Compared with the current aerosol modes: 1) more retrieved aerosol optical depths (AODs) from the revised aerosol modes lie within the expected error bars and 2) the linear regression lines of the retrievals from the revised aerosol modes and AERONET are closer to the 1:1 line.

Corresponding author address: Jiacheng Wang, College of Physics and Electronic Information, Fuyang University, Fuyang 236037, China. E-mail: shanqiangw@yahoo.com.cn
Save
  • Ahmad, Z., and R. S. Fraser, 1982: An iterative radiative transfer code for ocean–atmosphere systems. J. Atmos. Sci., 39, 656665.

  • Ahmad, Z., B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, 2010: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt., 49, 55455560.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., 1987: On the variability of desert aerosol radiative characteristics. J. Geophys. Res., 92 (D3), 30173026.

  • Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. J. Geophys. Res., 105 (D8), 97919806.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyk, M. I. Mishchenko, P. Yang, and I. Slutsker, 2002: Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett., 29, 1415, doi:10.1029/2001GL014506.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and Coauthors, 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116.

    • Search Google Scholar
    • Export Citation
  • Ichoku, C., D. A. Chu, S. Mattoo, Y. J. Kaufman, L. A. Remer, D. Tanré, I. Slutsker, and B. N. Holben, 2002: A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett., 29, 8006, doi:10.1029/2001GL013206.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and B. N. Holben, 1996: Hemispherical backscattering by biomass burning and sulfate particles derived from sky measurements. J. Geophys. Res., 101 (D14), 19 43319 445.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and D. Tanré, 1998: Algorithm for remote sensing of tropospheric aerosol from MODIS. NASA Product Rep. MOD04, 85 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod02.pdf.]

  • Kaufman, Y. J., A. Gitelson, A. Karnieli, E. Ganor, R. S. Fraser, T. Nakajima, S. Mattoo, and B. N. Holben, 1994: Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements. J. Geophys. Res., 99 (D5), 10 34110 356.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Y. J. Kaufman, D. Tanré, and T. Nakajima, 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80, 22302259.

    • Search Google Scholar
    • Export Citation
  • Kleidman, R. G., N. T. O’Neill, L. A. Remer, Y. J. Kaufman, T. F. Eck, D. Tanré, O. Dubovik, and B. N. Holben, 2005: Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. J. Geophys. Res., 110, D22205, doi:10.1029/2005JD005760.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., and Coauthors, 2003: Evaluation of the Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE. J. Geophys. Res., 108, 8594, doi:10.1029/2002JD002460.

    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Goloub, C. Devaux, X. Gu, J.-L. Deuzé, Y. Qiao, and F. Zhao, 2006: Retrieval of aerosol optical and physical properties from ground-based spectral, multi-angular, and polarized sun-photometer measurements. Remote Sens. Environ., 101, 519533.

    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Goloub, L. Blarel, B. Damiri, T. Podvin, and I. Jankowiak, 2007: Dust optical properties retrieved from ground-based polarimetric measurements. Appl. Opt., 46, 15481553.

    • Search Google Scholar
    • Export Citation
  • Li, Z., L. Blarel, T. Podvin, P. Goloub, J. P. Buis, and J. P. Morel, 2008: Transferring the calibration of direct solar irradiance to diffuse-sky radiance measurements for CIMEL sun-sky radiometers. Appl. Opt., 47, 13681377.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2009: Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements. J. Quant. Spectrosc. Radiat. Transfer, 110, 19541961, doi:10.1016/j.jqsrt.2009.04.009.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., G. Tonna, R. Rao, P. Boi, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt., 35, 26722686.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973.

  • Remer, L. A., D. Tanré, Y. J. Kaufman, R. Levy, and S. Mattoo, 2006: Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 5. NASA Product Rep. MOD04/MYD04, 87 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/MOD04-MYD04_ATBD_C005.pdf.]

  • Schuster, G. L., M. Vaughan, D. MacDonnell, W. Su, D. Winker, O. Dubovik, T. Lapyonok, and C. Trepte, 2012: Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmos. Chem. Phys. Discuss., 12, 11 64111 697.

    • Search Google Scholar
    • Export Citation
  • Shettle, E. P., and R. W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. AFGL Tech. Rep. AFGL-TR-79-0214, Environmental Research Paper 676, Optical Physics Division Project 7670, 23 pp.

  • Smirnov, A., B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET data base. Remote Sens. Environ., 73, 337349.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., and Coauthors, 2002: Atmospheric aerosol optical properties in the Persian Gulf. J. Atmos. Sci., 59, 620634.

  • Tanré, D., Y. J. Kaufman, M. Herman, and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res., 102 (D14), 16 97116 988.

    • Search Google Scholar
    • Export Citation
  • Whitby, K. Y., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135159.

  • Zhang, K., W. Li, K. Stamnes, H. Eide, R. Spurr, and S.-C. Tsay, 2007: Assessment of the Moderate-Resolution Imaging Spectroradiometer algorithm for retrieval of aerosol parameters over the ocean. Appl. Opt., 46, 15251534.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 74 7
PDF Downloads 118 53 2