Freezing of Raindrops in Deep Convective Updrafts: A Microphysical and Polarimetric Model

Matthew R. Kumjian Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Scott M. Ganson Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Scott M. Ganson in
Current site
Google Scholar
PubMed
Close
, and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polarimetric radar observations of convective storms routinely reveal positive differential reflectivity ZDR extending above the 0°C level, indicative of the presence of supercooled liquid particles lofted by the storm’s updraft. The summit of such “ZDR columns” is marked by a zone of enhanced linear depolarization ratio LDR or decreased copolar cross-correlation coefficient ρhv and a sharp decrease in ZDR that together mark a particle freezing zone. To better understand the relation between changes in the storm updraft and the observed polarimetric variables, it is necessary to first understand the physics governing this freezing process and the impact of freezing on the polarimetric variables.

A simplified, one-dimensional explicit bin microphysics model of stochastic drop nucleation by an immersed foreign particle and subsequent deterministic freezing is developed and coupled with an electromagnetic scattering model to explore the impact of the freezing process on the polarimetric radar variables. As expected, the height of the ZDR column is closely related to the updraft strength and initial drop size distribution. Additionally, the treatment of the stochastic nucleation process can also affect the depth of the freezing zone, underscoring the need to accurately depict this process in parameterizations. Representation of stochastic nucleation and deterministic freezing for each drop size bin yields better agreement between observations and the modeled vertical profiles of the surface reflectivity factor ZH and ZDR than bulk microphysics schemes. Further improvements in the representation of the LDR cap, the observed ZDR gradient in the freezing zone, and the magnitude of the ρhv minimum may require inclusion of accretion, which was not included in this model.

Current affiliation: Advanced Studies Program, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Matthew R. Kumjian, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: kumjian@ucar.edu

Abstract

Polarimetric radar observations of convective storms routinely reveal positive differential reflectivity ZDR extending above the 0°C level, indicative of the presence of supercooled liquid particles lofted by the storm’s updraft. The summit of such “ZDR columns” is marked by a zone of enhanced linear depolarization ratio LDR or decreased copolar cross-correlation coefficient ρhv and a sharp decrease in ZDR that together mark a particle freezing zone. To better understand the relation between changes in the storm updraft and the observed polarimetric variables, it is necessary to first understand the physics governing this freezing process and the impact of freezing on the polarimetric variables.

A simplified, one-dimensional explicit bin microphysics model of stochastic drop nucleation by an immersed foreign particle and subsequent deterministic freezing is developed and coupled with an electromagnetic scattering model to explore the impact of the freezing process on the polarimetric radar variables. As expected, the height of the ZDR column is closely related to the updraft strength and initial drop size distribution. Additionally, the treatment of the stochastic nucleation process can also affect the depth of the freezing zone, underscoring the need to accurately depict this process in parameterizations. Representation of stochastic nucleation and deterministic freezing for each drop size bin yields better agreement between observations and the modeled vertical profiles of the surface reflectivity factor ZH and ZDR than bulk microphysics schemes. Further improvements in the representation of the LDR cap, the observed ZDR gradient in the freezing zone, and the magnitude of the ρhv minimum may require inclusion of accretion, which was not included in this model.

Current affiliation: Advanced Studies Program, National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Matthew R. Kumjian, NCAR, P.O. Box 3000, Boulder, CO 80307. E-mail: kumjian@ucar.edu
Save
  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens., 28, 412422.

    • Search Google Scholar
    • Export Citation
  • Barklie, R. H. D., and N. R. Gokhale, 1959: The freezing of supercooled water drops. McGill University Stormy Weather Group Science Rep. MW-30, 43–64.

  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and A. R. Jameson, 1983: Raindrop canting. J. Atmos. Sci., 40, 448454.

  • Bigg, E. K., 1953a: The supercooling of water. Proc. Phys. Soc. B, 66, 688694.

  • Bigg, E. K., 1953b: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519.

  • Blyth, A. M., R. E. Benestad, P. R. Krehbiel, and J. Latham, 1997: Observations of supercooled raindrops in New Mexico summertime cumuli. J. Atmos. Sci., 54, 569575.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 660 pp.

  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of Florida thunderstorms during the Convection and Precipitation Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 21312160.

    • Search Google Scholar
    • Export Citation
  • Brussard, G., 1976: A meteorological model for rain-induced cross-polarization. IEEE Trans. Antennas Propag., AP24, 511.

  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710.

    • Search Google Scholar
    • Export Citation
  • Caylor, I. J., and A. J. Illingworth, 1987: Radar observations and modelling of warm rain initiation. Quart. J. Roy. Meteor. Soc., 113, 11711191.

    • Search Google Scholar
    • Export Citation
  • Clabo, D. R., A. G. Detwiler, and P. L. Smith, 2009: Polarimetric radar signatures of hydrometeors observed within mature convective storms. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P13.5. [Available online at http://ams.confex.com/ams/pdfpapers/155110.pdf.]

  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev., 121, 25112528.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., V. Bringi, A. V. Ryzhkov, A. Zahrai, and D. S. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257278.

    • Search Google Scholar
    • Export Citation
  • Federer, B., and A. Waldvogel, 1978: Time-resolved hailstone analyses and radar structure of Swiss storms. Quart. J. Roy. Meteor. Soc., 104, 6990.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. duToit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253.

  • French, J. R., J. H. Helsdon, A. G. Detwiler, and P. L. Smith, 1996: Microphysical and electrical evolution of a Florida thunderstorm, 1. Observations. J. Geophys. Res., 101, 18 96118 978.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. L. Sax, D. Lamb, and A. S. R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374.

    • Search Google Scholar
    • Export Citation
  • Heverly, J. R., 1949: Supercooling and crystallization. Trans. Amer. Geophys. Union, 30, 205210.

  • Höller, H., M. Hagen, P. F. Meischner, V. N. Bringi, and J. Hubbert, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 25002522.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor., 35, 343354.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., and J. Hallett, 1968: Freezing and shattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482.

  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., S. A. Rutledge, W. A. Petersen, and V. N. Bringi, 2001: Polarimetric radar observations of hail formation. J. Appl. Meteor., 40, 13471366.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Pinsky, M. Shapiro, and A. Pokrovsky, 2001: Collision rate of small graupel and water drops. J. Atmos. Sci., 58, 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D frame. Atmos. Res., 99, 129146.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970: Hailstone embryos. J. Atmos. Sci., 27, 659666.

  • Knight, C. A., and N. C. Knight, 1974: Drop freezing in clouds. J. Atmos. Sci., 31, 11741176.

  • Knight, C. A., and N. C. Knight, 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 223–254.

  • Knight, N. C., 1981: The climatology of hailstone embryos. J. Appl. Meteor., 20, 750755.

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc., A247, 493505.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon. Wea. Rev., 133, 4458.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 442 pp.

  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc., A203, 385420.

  • May, P. T., A. R. Jameson, T. D. Keenan, and P. E. Johnston, 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40, 17021717.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130, 22282239.

    • Search Google Scholar
    • Export Citation
  • McCormick, G. C., and A. Hendry, 1974: Polarization properties of transmission through precipitation over a communication link. J. Rech. Atmos., 8, 175187.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Höller, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983.

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2010: Polarimetric signatures of melting hail at S and C bands: Detection and short-term forecast. Preprints, 26th Conf. on Interactive Information and Processing Systems (IIPS), Atlanta, GA, Amer. Meteor. Soc., 10B.4. [Available online at https://ams.confex.com/ams/90annual/webprogram/Paper161240.html.]

  • Picca, J. C., and A. V. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., M. R. Kumjian, and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3. [Available online at https://ams.confex.com/ams/25SLS/webprogram/Paper175750.html.]

  • Pitter, R. L., and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99, 540550.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 348 pp.

  • Ramachandran, R., A. Detwiler, J. Helsdon Jr., P. L. Smith, and V. N. Bringi, 1996: Precipitation development and electrification in Florida thunderstorm cells during Convection and Precipitation/Electrification Project. J. Geophys. Res., 101 (D1), 15991620.

    • Search Google Scholar
    • Export Citation
  • Ray, P., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844.

  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315238.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Ryzhkov, A. V., S. M. Ganson, A. Khain, M. Pinsky, and A. Pokrovsky, 2009: Polarimetric characteristics of melting hail at S and C bands. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.6. [Available online at http://ams.confex.com/ams/pdfpapers/155571.pdf.]

  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. J., 1971: Cross-polarization at 18 and 30 GHz due to rain. IEEE Trans. Antennas Propag., AP19, 273277.

  • Schlatter, P. T., 2003: Polarimetric radar and in-situ measurements of a nontornadic supercell. M.S. thesis, School of Meteorology, University of Oklahoma, 97 pp.

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260.

  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145155.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1971: Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci., 28, 402409.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856.

  • Wisner, C., H. D. Orville, and C. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 11601181.

  • Zhang, G., J. Vivekanandan, and E. A. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830840.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, and T. Kozu, 2003: The shape-slope relation in gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 11061119.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681792.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 245 53
PDF Downloads 491 133 15