On the Equivalence of Two Schemes for Convective Momentum Transport

David M. Romps Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by David M. Romps in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Gregory–Kershaw–Inness (GKI) parameterization of convective momentum transport, which has a tunable parameter C, is shown to be identical to a parameterization with no pressure gradient force and a mass flux smaller by a factor of 1 − C. Using cloud-resolving simulations, the transilient matrix for momentum is diagnosed for deep convection in radiative–convective equilibrium. Using this transilient matrix, it is shown that the GKI scheme underestimates the compensating subsidence of momentum by a factor of 1 − C, as predicted. This result is confirmed using a large-eddy simulation.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, University of California, Berkeley, 377 McCone Hall, Berkeley, CA 94720. E-mail: romps@berkeley.edu

Abstract

The Gregory–Kershaw–Inness (GKI) parameterization of convective momentum transport, which has a tunable parameter C, is shown to be identical to a parameterization with no pressure gradient force and a mass flux smaller by a factor of 1 − C. Using cloud-resolving simulations, the transilient matrix for momentum is diagnosed for deep convection in radiative–convective equilibrium. Using this transilient matrix, it is shown that the GKI scheme underestimates the compensating subsidence of momentum by a factor of 1 − C, as predicted. This result is confirmed using a large-eddy simulation.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, University of California, Berkeley, 377 McCone Hall, Berkeley, CA 94720. E-mail: romps@berkeley.edu
Save
  • Austin, P. M., and R. A. Houze, 1973: A technique for computing vertical transports by precipitating cumuli. J. Atmos. Sci., 30, 11001111.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parametrization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183, doi:10.1002/qj.49712354103.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., 1960: The motion and erosion of convective storms in severe vertical wind shear. J. Atmos. Sci., 17, 270282.

  • Houze, R. A., 1973: A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci., 30, 11121123.

  • Jorgensen, D. P., M. A. LeMone, and B. Jong-Dao Jou, 1991: Precipitation and kinematic structure of an oceanic mesoscale convective system. Part I: Convective line structure. Mon. Wea. Rev., 119, 26082637.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., A. L. M. Grant, S. H. Derbyshire, and S. Cusack, 2000: The numerical stability of a parametrization of convective momentum transport. Quart. J. Roy. Meteor. Soc., 126, 29812984.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. T. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213226.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., J. L. Redelsperger, and G. Jaubert, 1988: Comparison between a three-dimensional simulation and Doppler radar data of a tropical squall line: Transport of mass, momentum, heat, and moisture. J. Atmos. Sci., 45, 34833500.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and M. W. Moncrieff, 2010: Characterization of momentum transport associated with organized moist convection and gravity waves. J. Atmos. Sci., 67, 32083225.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834.

  • LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 19141932.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., G. M. Barnes, J. C. Fankhauser, and L. F. Tarleton, 1988: Perturbation pressure fields measured by aircraft around the cloud-base updraft of deep convective clouds. Mon. Wea. Rev., 116, 313327.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. J., T. C. Wang, and J. H. Lin, 1986: Pressure and temperature perturbations within a squall-line thunderstorm derived from SESAME dual-Doppler data. J. Atmos. Sci., 43, 23022327.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. Roy. Meteor. Soc., 78, 530542.

  • Mapes, B. E., and X. Wu, 2001: Convective eddy momentum tendencies in long cloud-resolving model simulations. J. Atmos. Sci., 58, 517526.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.1). NCAR Tech. Note NCAR/TN-486+STR, 286 pp.

  • Newton, C. W., 1966: Circulations in large sheared cumulonimbus. Tellus, 18, 699713.

  • Newton, C. W., and H. R. Newton, 1959: Dynamical interactions between large convective clouds and environment with vertical shear. J. Atmos. Sci., 16, 483496.

    • Search Google Scholar
    • Export Citation
  • Ramond, D., 1978: Pressure perturbations in deep convection: An experimental study. J. Atmos. Sci., 35, 17041711.

  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799.

  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2011: A transilient matrix for moist convection. J. Atmos. Sci., 68, 20092025.

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and K. A. Emanuel, 1977: The momentum budget and temporal evolution of a mesoscale convective system. J. Atmos. Sci., 34, 322330.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81 (18), 31583160.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and D. E. Stevens, 1980: Parameterization of convective effects on the momentum and vorticity budgets of synoptic-scale Atlantic tropical waves. Mon. Wea. Rev., 108, 18161826

    • Search Google Scholar
    • Export Citation
  • Soong, S. T., and W. K. Tao, 1984: A numerical study of the vertical transport of momentum in a tropical rainband. J. Atmos. Sci., 41, 10491061.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1984: Transilient turbulence theory. Part I: The concept of eddy-mixing across finite distances. J. Atmos. Sci., 41, 33513367.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., M.-D. Cheng, X. Wu, and M. Yanai, 1989: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part II: Parametrization. J. Atmos. Sci., 46, 16091629.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and S.-T. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 26532676.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Wu, X., L. Deng, X. Song, and G. J. Zhang, 2007: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and H.-R. Cho, 1991: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 11201139.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 657 440 168
PDF Downloads 188 62 4