Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing Diurnal Cycles from CERES

Patrick C. Taylor Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Patrick C. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The diurnal cycle is a fundamental earth system variability driven by daily variations in solar insolation. Understanding diurnal variability is important for characterizing top-of-atmosphere and surface energy budgets. Climatological and seasonal first diurnal cycle harmonics of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) are investigated using the Clouds and the Earth’s Radiant Energy System (CERES) synoptic 3-hourly data. A comparison with previous studies indicates generally similar results. However, the results indicate that the CERES OLR diurnal cycle amplitudes are 10%–20% larger in desert regions than previous analyses. This difference results from the temporal interpolation technique overestimating the daily maximum OLR. OLR diurnal cycle amplitudes in other tropical regions agree with previous work. Results show that the diurnal maximum and minimum OLR variability contributes equally to the total OLR variance over ocean; however, over land the diurnal maximum OLR variance contributes at least 50% more to the total OLR variability than the minimum OLR. The differences in maximum and minimum daily OLR variability are largely due to differences in surface temperature standard deviations at these times, about 5–6 and 3–4 K, respectively. The OLR variance at diurnal maximum and minimum is also influenced by negative and positive correlations, respectively, between LWCF and clear-sky OLR. The anticorrelation between LWCF and clear-sky OLR at diurnal OLR maximum indicates smaller cloud fractions at warmer surface temperatures. The relationship between LWCF and clear-sky OLR at diurnal minimum OLR appears to result from a preference for deep convection, more high clouds, and larger LWCF values to occur with warmer surface temperatures driving a narrower diurnal minimum OLR distribution.

Corresponding author address: Patrick Taylor, NASA Langley Research Center, 21 Langley Blvd., Mail Stop 420, Hampton, VA 23681. E-mail: patrick.c.taylor@nasa.gov

Abstract

The diurnal cycle is a fundamental earth system variability driven by daily variations in solar insolation. Understanding diurnal variability is important for characterizing top-of-atmosphere and surface energy budgets. Climatological and seasonal first diurnal cycle harmonics of outgoing longwave radiation (OLR) and longwave cloud forcing (LWCF) are investigated using the Clouds and the Earth’s Radiant Energy System (CERES) synoptic 3-hourly data. A comparison with previous studies indicates generally similar results. However, the results indicate that the CERES OLR diurnal cycle amplitudes are 10%–20% larger in desert regions than previous analyses. This difference results from the temporal interpolation technique overestimating the daily maximum OLR. OLR diurnal cycle amplitudes in other tropical regions agree with previous work. Results show that the diurnal maximum and minimum OLR variability contributes equally to the total OLR variance over ocean; however, over land the diurnal maximum OLR variance contributes at least 50% more to the total OLR variability than the minimum OLR. The differences in maximum and minimum daily OLR variability are largely due to differences in surface temperature standard deviations at these times, about 5–6 and 3–4 K, respectively. The OLR variance at diurnal maximum and minimum is also influenced by negative and positive correlations, respectively, between LWCF and clear-sky OLR. The anticorrelation between LWCF and clear-sky OLR at diurnal OLR maximum indicates smaller cloud fractions at warmer surface temperatures. The relationship between LWCF and clear-sky OLR at diurnal minimum OLR appears to result from a preference for deep convection, more high clouds, and larger LWCF values to occur with warmer surface temperatures driving a narrower diurnal minimum OLR distribution.

Corresponding author address: Patrick Taylor, NASA Langley Research Center, 21 Langley Blvd., Mail Stop 420, Hampton, VA 23681. E-mail: patrick.c.taylor@nasa.gov
Save
  • Allan, R. P., A. Slingo, S. F. Milton, and M. E. Brooks, 2007: Evaluation of the Met Office global model using Geostationary Earth Radiation Budget (GERB) data. Quart. J. Roy. Meteor. Soc., 133, 19932010.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1996: Diurnal variations of cloud cover and their relationship to climatological conditions. J. Climate, 9, 28022820.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1997: The role of cloud diurnal variations in the time-mean energy budget. J. Climate, 10, 11141124.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system–Version 4. Technical Report Series on Global Modeling and Data Assimilation, Vol. 26, NASA Tech. Memo. NASA/TM-25-104606, 181 pp.

  • Chung, E.-S., B.-J. Sohn, and J. Schmetz, 2009: Diurnal variation of outgoing longwave radiation associated with high cloud and UTH changes from Meteosat-5 measurements. Meteor. Atmos. Phys., 105, 109119, doi:10.1007/s00703-009-0041-8.

    • Search Google Scholar
    • Export Citation
  • Comer, R. E., A. Slingo, and R. P. Allan, 2007: Observations of the diurnal cycle of outgoing longwave radiation from the Geostationary Earth Radiation Budget instrument. Geophys. Res. Lett., 34, L02823, doi:10.1029/2006GL028229.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738.

  • Duynkerke, P. G., and J. Teixeira, 2001: Comparison of the ECMWF reanalysis with FIRE I observations: Diurnal variation of marine stratocumulus. J. Climate, 14, 14661478.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., J. E. Russel, and J. E. Harries, 2005. Determining cloud forcing by cloud type from geostationary satellite data. Geophys. Res. Lett., 32, L08807, doi:10.1029/2004GL022275.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Munoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188.

  • Gruber, A., and T. S. Chen, 1988: Diurnal variation of outgoing longwave radiation. Int. J. Climatol., 8, 116.

  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945960.

  • Hartmann, D. L., and E. E. Recker, 1986: Diurnal variation of outgoing longwave radiation in the tropics. J. Climate Appl. Meteor., 25, 800812.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., K. J. Kowalewsky, and M. L. Michelsen, 1991: Diurnal variations of outgoing longwave radiation and albedo from ERBE scanner data. J. Climate, 4, 598617.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and K. Woodberry, 1993: The diurnal cycle of tropical convection. J. Geophys. Res., 98 (D9), 16 62316 637.

  • Hong, G., G. Heygster, and C. A. M Rodriguez, 2006: Effect of cirrus clouds on the diurnal cycle of tropical deep convective clouds. J. Geophys. Res., 111, D06209, doi:10.1029/2005JD006208.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., P. A. Arkin, and M. Morrissey, 1994: An examination of the diurnal cycle in oceanic tropical rainfall using satellite and in situ data. Mon. Wea. Rev., 122, 22962311.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and A. Gruber, 1988: Annual variation of the diurnal cycle of outgoing longwave radiation. Mon. Wea. Rev., 116, 16591670.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984a: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. J. Climate Appl. Meteor., 23, 9931011.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984b: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part II: November 1978 cloud distributions. J. Climate Appl. Meteor., 23, 10121031.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and E. F. Harrison, 1984c: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 radiative parameters. J. Climate Appl. Meteor., 23, 10321051.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. F. Young, and E. F. Harrison, 1991: Examination of the relationship between outgoing infrared window and total longwave fluxes using satellite data. J. Climate, 4, 11141133.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1991: Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon. Wea. Rev., 119, 12051224.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • Nowicki, S. M. J., and C. J. Merchant, 2004: Observations of diurnal and spatial variability of radiative forcing by equatorial deep convective clouds. J. Geophys. Res., 109, D11202, doi:10.1029/2003JD004176.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4061.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., and W. R. Bandeen, 1970: The radiation balance of the planet earth from radiation measurements of the satellite Nimbus II. J. Appl. Meteor., 9, 215238.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variation of marine stratiform cloud. J. Climate, 8, 17951809.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., and Q. Liu, 1988: Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J. Geophys. Res., 93 (D9), 11 19211 204.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and J. M. Wallace, 1980: Satellite-inferred morning-to-evening cloudiness changes. Mon. Wea. Rev., 108, 11601169.

  • Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130, 14491467.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., and D. A. Rutan, 2003: The diurnal cycle of outgoing longwave radiation from Earth Radiation Budget Experiment measurements. J. Atmos. Sci., 60, 15291542.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett., 27, 21732176.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655.

    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Turton, J. D., and S. Nicholls, 1987: A study of the diurnal variation of stratocumulus using a multiple mixed layer model. Quart. J. Roy. Meteor. Soc., 113, 9691009.

    • Search Google Scholar
    • Export Citation
  • Wu, M.-L. C., S. D. Schubert, M. J. Suarez, and P. J. Pegion, 2006: Seasonality and meridional propagation of the MJO. J. Climate, 19, 19011921.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yang, S., K.-S. Kuo, and E. A. Smith, 2008: Persistent nature of secondary diurnal modes of precipitation over oceanic and continental regimes. J. Climate, 21, 41154131.

    • Search Google Scholar
    • Export Citation
  • Young, D. F., P. Minnis, D. R. Doelling, G. G. Gibson, and T. Wong, 1998: Temporal interpolation methods for the Clouds and the Earth’s Radiant Energy System (CERES) experiment. J. Appl. Meteor., 37, 572590.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1428 521 125
PDF Downloads 777 133 13