• Alexandru, A., , R. de Elia, , and R. Laprise, 2007: Internal variability in regional climate downscaling at the seasonal scale. Mon. Wea. Rev., 135, 32213238.

    • Search Google Scholar
    • Export Citation
  • Awan, N. K., , H. Truhetz, , and A. Gobiet, 2011: Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the alpine region: An ensemble-based analysis. J. Climate, 24, 31073123.

    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., , and C. J. C. Reason, 2009: Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus, 61A, 1735.

    • Search Google Scholar
    • Export Citation
  • Caya, D., , and S. Biner, 2004: Internal variability of RCM simulations over an annual cycle. Climate Dyn., 22, 3346.

  • Cook, K. H., 2000: The South Indian convergence zone and interannual rainfall variability over southern Africa. J. Climate, 13, 37893804.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., , C. Macron, , B. Pohl, , and Y. Richard, 2011a: Quantifying internal variability in a regional climate model: A case study for Southern Africa. Climate Dyn., 37, 13351356, doi:10.1007/s00382-011-1021-5.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., , B. Pohl, , Y. Richard, , and P. Drobinski, 2011b: Uncertainties in simulating regional climate of Southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., doi:10.1007/s00382-011-1055-8, in press.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Fauchereau, N., , B. Pohl, , C. J. C. Reason, , M. Rouault, , and Y. Richard, 2009: Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Climate Dyn., 32, 575591, doi:10.1007/s00382-008-0426-2.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., , S. Bastin, , and S. Janicot, 2011: Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterisation using WRF. Climate Dyn., 36, 10831105, doi:10.1007/s00382-010-0785-3.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and X. Bi, 2000: A study of internal variability of a regional climate model. J. Geophys. Res., 105, 29 50329 521.

  • Grell, G. A., , and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., 1984: A generalized classification of South African rain-bearing synoptic systems. J. Climatol., 4, 547560.

  • Heikkilä, U., , A. Sandvik, , and A. Sorteberg, 2010: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 15511564, doi:10.1007/s00382-010-0928-6.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kgatuke, M. M., , W. A. Landman, , A. Beraki, , and M. P. Mbedzi, 2008: The internal variability of the RegCM3 over South Africa. Int. J. Climatol., 28, 505520.

    • Search Google Scholar
    • Export Citation
  • Leduc, M., , and R. Laprise, 2009: Regional climate model sensitivity to domain size. Climate Dyn., 32, 833854, doi:10.1007/s00382-008-0400-z.

    • Search Google Scholar
    • Export Citation
  • Lucas-Picher, P., , D. Caya, , S. Biner, , and R. Laprise, 2008: Quantification of the lateral boundary forcing of a regional climate model using an aging tracer. Mon. Wea. Rev., 136, 49804996.

    • Search Google Scholar
    • Export Citation
  • Lynch, S. D., 2003: Development of a RASTER database of annual, monthly and daily rainfall for Southern Africa. WRC Rep. N 1156/1/03, 78 pp.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E., , S. Taubman, , P. Brown, , M. Iacono, , and S. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , J. Crétat, , and P. Camberlin, 2011: Testing WRF capability in simulating the atmospheric water cycle over equatorial East Africa. Climate Dyn., 37, 13571379, doi:10.1007/s00382-011-1024-2.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., , P. Marbaix, , and K. Dethloff, 2004: Internal variability in Arctic regional climate simulations: Case study for the SHEBA year. Climate Res., 27, 197209.

    • Search Google Scholar
    • Export Citation
  • Separovic, L., , R. de Elia, , and R. Laprise, 2008: Reproducible and irreproducible components in ensemble simulations with a regional climate model. Mon. Wea. Rev., 136, 49424961.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Todd, M., , and R. Washington, 1999: Circulation anomalies associated with tropical-temperate troughs in southern Africa and the south west Indian Ocean. Climate Dyn., 15, 937951.

    • Search Google Scholar
    • Export Citation
  • Todd, M., , R. Washington, , and P. Palmer, 2004: Water vapour transport associated with tropical–temperate trough systems over South Africa and the southwest Indian Ocean. Int. J. Climatol., 24, 555568.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vanvyve, E., , N. M. J. Hall, , C. Messager, , S. Leroux, , and J. P. van Ypersele, 2008: Internal variability in a regional climate model over West Africa. Climate Dyn., 30, 191202.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., , Y. Richard, , M. Rouault, , and N. Fauchereau, 2007: Water vapour transport from the tropical Atlantic and summer rainfall in tropical southern Africa. Climate Dyn., 28, 113123.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., , Y. Richard, , M. Rouault, , and N. Fauchereau, 2009: Moisture transport between the South Atlantic Ocean and southern Africa: Relationships with summer rainfall and associated dynamics. Climate Dyn., 32, 113123.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., , P. Roucou, , B. Fontaine, , S. Sijikumar, , and S. Tyteca, 2011: WRF/ARPEGE-CLIMAT simulated climate trends over West Africa. Climate Dyn., 36, 925944, doi:10.1007/s00382-009-0707-4.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., , and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174.

  • Washington, R., , and A. Preston, 2006: Extreme wet years over southern Africa: Role of Indian Ocean sea surface temperature. J. Geophys. Res., 111, D15104, doi:10.1029/2005JD006724.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 5
PDF Downloads 17 17 2

How Physical Parameterizations Can Modulate Internal Variability in a Regional Climate Model

View More View Less
  • 1 Centre de Recherches de Climatologie, CNRS/Université de Bourgogne, Dijon, France
© Get Permissions
Restricted access

Abstract

The authors analyze to what extent the internal variability simulated by a regional climate model is sensitive to its physical parameterizations. The influence of two convection schemes is quantified over southern Africa, where convective rainfall predominates. Internal variability is much larger with the Kain–Fritsch scheme than for the Grell–Dévényi scheme at the seasonal, intraseasonal, and daily time scales, and from the regional to the local (grid point) spatial scales. Phenomenological analyses reveal that the core (periphery) of the rain-bearing systems tends to be highly (weakly) reproducible, showing that it is their morphological features that induce the largest internal variability in the model. In addition to the domain settings and the lateral forcing conditions extensively analyzed in the literature, the physical package appears thus as a key factor that modulates the reproducible and irreproducible components of regional climate variability.

Corresponding author address: Benjamin Pohl, Centre de Recherches de Climatologie, 6 boulevard Gabriel, 21000 Dijon, France.E-mail: benjamin.pohl@u-bourgogne.fr

Abstract

The authors analyze to what extent the internal variability simulated by a regional climate model is sensitive to its physical parameterizations. The influence of two convection schemes is quantified over southern Africa, where convective rainfall predominates. Internal variability is much larger with the Kain–Fritsch scheme than for the Grell–Dévényi scheme at the seasonal, intraseasonal, and daily time scales, and from the regional to the local (grid point) spatial scales. Phenomenological analyses reveal that the core (periphery) of the rain-bearing systems tends to be highly (weakly) reproducible, showing that it is their morphological features that induce the largest internal variability in the model. In addition to the domain settings and the lateral forcing conditions extensively analyzed in the literature, the physical package appears thus as a key factor that modulates the reproducible and irreproducible components of regional climate variability.

Corresponding author address: Benjamin Pohl, Centre de Recherches de Climatologie, 6 boulevard Gabriel, 21000 Dijon, France.E-mail: benjamin.pohl@u-bourgogne.fr
Save