• Aurell, E., , G. Boffetta, , A. Crisanti, , G. Paladin, , and A. Vulpiani, 1997: Predictability in the large: An extension of the concept of Lyapunov exponent. J. Phys., 30A, 126, doi:10.1088/0305-4470/30/1/003.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., , M. J. Olascoaga, , M. G. Brown, , H. Koçak, , and I. I. Rypina, 2010: Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos, 20, 017514, doi:10.1063/1.3271342.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 1993: Large-scale isentropic mixing properties of the Antarctic polar vortex from analyzed winds. J. Geophys. Res., 98, 23 01323 027.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2000: Manifold geometry and mixing in observed atmospheric flows. [Available online at http://geotest.tamu.edu/userfiles/213/manifold_geometry.pdf.]

    • Search Google Scholar
    • Export Citation
  • Chen, P., 1994: The permeability of the Antarctic vortex edge. J. Geophys. Res., 99, 20 56320 571.

  • Chen, P., , J. R. Holton, , A. O’Neill, , and R. Swinbank, 1994: Quasi-horizontal transport and mixing in the Antarctic stratosphere. J. Geophys. Res., 99, 16 85116 866.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , C. R. Mechoso, , K. Ide, , R. Waltersheid, , and G. Schubert, 2010: Polar night vortex breakdown and large-scale stirring in the Southern Hemisphere. Climate Dyn., 35, 965975, doi:10.1007/s00382-009-0632-6.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1989: Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep., 10, 77146.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2000: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10, 99108.

  • Haller, G., 2001: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids, 13, 33653384, doi:10.1063/1.1403336.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and Coauthors, 1989: Potential vorticity and mixing in the south polar vortex during spring. J. Geophys. Res., 94, 11 62511 640.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., and Coauthors, 2007: Stratéole/Vorcore long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter. J. Atmos. Oceanic Technol., 24, 20482061.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940.

    • Search Google Scholar
    • Export Citation
  • Joseph, B., , and B. Legras, 2002: Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci., 59, 11981212.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., , and M. E. McIntyre, 1987: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Science, 328, 590596.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., , and R. A. Plumb, 2000: Lobe dynamics applied to barotropic Rossby-wave breaking. Phys. Fluids, 12, 15181528.

  • Koh, T.-Y., , and B. Legras, 2002: Hyperbolic lines and the stratospheric polar vortex. Chaos, 12, 382394, doi:10.1063/1.1480442.

  • Lee, A. M., , H. K. Roscoe, , A. E. Jones, , P. H. Haynes, , E. F. Shuckburgh, , M. W. Morrey, , and H. Pumphrey, 2001: The impact of the mixing properties within the Antarctic stratospheric vortex on ozone loss in spring. J. Geophys. Res., 106, 32033211.

    • Search Google Scholar
    • Export Citation
  • Lekien, F., , and S. D. Ross, 2010: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505, doi:10.1063/1.3278516.

    • Search Google Scholar
    • Export Citation
  • Li, S., , E. C. Cordero, , and D. J. Karoly, 2002: Transport out of the Antarctic polar vortex from a three-dimensional transport model. J. Geophys. Res., 107, 4132, doi:10.1029/2001JD000508.

    • Search Google Scholar
    • Export Citation
  • Madrid, J. A. J., , and A. M. Mancho, 2009: Distinguished trajectories in time dependent vector fields. Chaos, 19, 01311, doi:10.1063/1.3056050.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., , D. Small, , and S. Wiggins, 2004: Computation of hyperbolic trajectories and their stable and unstable manifolds for oceanographic flows represented as data sets. Nonlinear Processes Geophys., 11, 1733.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., , D. Small, , and S. Wiggins, 2006a: A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: theoretical and computational issues. Phys. Rep., 437, 55124, doi:10.1016/j.physrep.2006.09.005.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., , D. Small, , and S. Wiggins, 2006b: A comparison of methods for interpolating chaotic flows from discrete velocity data. Comput. Fluids, 35, 416428.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., , R. W. Zurek, , A. O’Neill, , and R. Swinbank, 1994: On the motion of air through the stratospheric polar vortex. J. Atmos. Sci., 51, 29732994.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., , C. R. Mechoso, , B. Legras, , and V. Daniel, 2000: The evolution of the ozone “collar” in the Antarctic lower stratosphere during early August 1994. J. Atmos. Sci., 57, 402414.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., , and T. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825849.

  • Mechoso, C. R., , A. O’Neill, , V. D. Pope, , and J. D. Farrara, 1988: A study of the stratospheric final warming of 1982 in the southern hemisphere. Quart. J. Roy. Meteor. Soc., 114, 13651384.

    • Search Google Scholar
    • Export Citation
  • Mendoza, C., , and A. M. Mancho, 2010a: The hidden geometry of ocean flows. Phys. Rev. Lett., 105, 038501, doi:10.1103/PhysRevLett.105.038501.

    • Search Google Scholar
    • Export Citation
  • Öllers, M. C., , P. F. J. van Velthoven, , H. M. Kelder, , and L. P. J. Kamp, 2002: A study of the leakage of the Antarctic polar vortex in late austral winter and spring using isentropic and 3-D trajectories. J. Geophys. Res., 107, 4328, doi:10.1029/2001JD001363.

    • Search Google Scholar
    • Export Citation
  • Paparella, F., , A. Babiano, , C. Basdevant, , A. Provenzale, , and P. Tanga, 1997: A Lagrangian study of the Antarctic polar vortex. J. Geophys. Res., 102, 67656773.

    • Search Google Scholar
    • Export Citation
  • Río, N.-H., , and F. Hernández, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , F. J. Beron-Vera, , H. Koçak, , M. J. Olascoaga, , and I. A. Udovydchenkov, 2007a: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64, 35953610.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , F. J. Beron-Vera, , H. Koçak, , M. J. Olascoaga, , and I. A. Udovydchenkov, 2007b: Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability. Phys. Rev. Lett., 98, 104102, doi:10.1103/PhysRevLett.98.104102.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and S. Wiggins, 2006: Lagrangian Transport in Jets and Waves: The Dynamical System Approach. Springer, 147 pp.

  • Shadden, S. C., , F. Lekien, , and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271304, doi:10.1016/j.physd.2005.10.007.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191, doi:10.2151/jmsj.85B.165.

  • Simmons, A., , S. Uppala, , D. Dee, , and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Wiggins, S., 1992: Chaotic Transport in Dynamical Systems. Springer-Verlag, 301 pp.

  • Wiggins, S., 2003: Introduction to Applied Nonlinear Dynamics and Chaos. Springer, 843 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 47 47 17
PDF Downloads 25 25 7

Routes of Transport across the Antarctic Polar Vortex in the Southern Spring

View More View Less
  • 1 Departamento de Geofísica y Meteorología, Universidad Complutense de Madrid, and Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Madrid, Spain
  • | 2 Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Madrid, Spain
  • | 3 Department of Atmospheric and Oceanic Science, Center for Scientific Computing and Mathematical Modelling, and Earth Science Interdisciplinary Centre, Institute for Physical Science and Technology, College Park, Maryland
  • | 4 Departamento de Geofísica y Meteorología, Universidad Complutense de Madrid, Madrid, Spain
  • | 5 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Restricted access

Abstract

Transport in the lower stratosphere over Antarctica has been studied in the past by means of several approaches, such as contour dynamics or Lyapunov exponents. This paper examines the problem by means of a new Lagrangian descriptor, which is referred to as the function M. The focus is on the southern spring of 2005, which allows for a comparison with previous analyses based on Lyapunov exponents. With the methodology based on the function M, a much sharper depiction of key Lagrangian features is achieved and routes of large-scale horizontal transport across the vortex edge are captured. These results highlight the importance of lobe dynamics as a transport mechanism across the Antarctic polar vortex.

Corresponding author address: Alvaro de la Cámara, Departmento de Geofísica y Meteorología, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain. E-mail: alvarocamara@fis.ucm.es

Abstract

Transport in the lower stratosphere over Antarctica has been studied in the past by means of several approaches, such as contour dynamics or Lyapunov exponents. This paper examines the problem by means of a new Lagrangian descriptor, which is referred to as the function M. The focus is on the southern spring of 2005, which allows for a comparison with previous analyses based on Lyapunov exponents. With the methodology based on the function M, a much sharper depiction of key Lagrangian features is achieved and routes of large-scale horizontal transport across the vortex edge are captured. These results highlight the importance of lobe dynamics as a transport mechanism across the Antarctic polar vortex.

Corresponding author address: Alvaro de la Cámara, Departmento de Geofísica y Meteorología, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain. E-mail: alvarocamara@fis.ucm.es
Save