• Allen, D. R., , L. Coy, , S. D. Eckermann, , J. P. McCormack, , G. L. Manney, , T. F. Hogan, , and Y.-J. Kim, 2006: NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming. Mon. Wea. Rev., 134, 498518.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Baldwin, M. P., , D. B. Stephenson, , D. W. J. Thompson, , T. J. Dunkerton, , A. J. Charlton, , and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007a: The dynamics of Northern Hemisphere stratospheric final warming events. J. Atmos. Sci., 64, 29322946.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , and B. A. McDaniel, 2007b: Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J. Atmos. Sci., 64, 29682975.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., , B. A. McDaniel, , and W. A. Robinson, 2006: Stratosphere–troposphere coupling during spring onset. J. Climate, 19, 48914901.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , A. O’Neill, , D. B. Stephenson, , W. A. Lahoz, , and M. P. Baldwin, 2003: Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? Quart. J. Roy. Meteor. Soc., 129, 32053224.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 1999: Stratospheric vacillation in a general circulation model. J. Atmos. Sci., 56, 18581872.

  • Christiansen, B., 2000: Chaos, quasiperiodicity, and interannual variability: studies of a stratospheric vacillation model. J. Atmos. Sci., 57, 31613173.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. L. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., , C. Orbe, , and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801, doi:10.1029/2009GL040913.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , and C. Mass, 1976: Stratospheric vacillation cycle. J. Atmos. Sci., 33, 22182225.

  • Kuroda, Y., 2008: Role of the stratosphere on the predictability of medium-range weather forecast: A case study of winter 2003–2004. Geophys. Res. Lett., 35, L19701, doi:10.1029/2008GL034902.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1981: The amplification of height wave 1 in January 1979: A characteristic precondition for the major warming in February. Mon. Wea. Rev., 109, 983989.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., , and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643.

    • Search Google Scholar
    • Export Citation
  • Martius, O., , C. Schwierz, , and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765.

  • Mukougawa, H., , and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and D. W. Waugh, 2003: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regime. J. Climate, 17, 35483554.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , P. J. Kushner, , and L. M. Polvani, 2005: The coupled stratosphere–troposphere response to impulsive forcing from the troposphere. J. Atmos. Sci., 62, 33373352.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1986: The behavior of planetary wave 2 in preconditioned zonal flows. J. Atmos. Sci., 43, 31093121.

  • Roff, G., , D. W. J. Thompson, , and H. Hendon, 2011: Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys. Res. Lett., 38, L05809, doi:10.1029/2010GL046515.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , and P. F. Callaghan, 2007: Influence of planetary wave activity on the stratospheric final warming and spring ozone. J. Geophys. Res., 112, D20111, doi:10.1029/2006JD007536.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , and P. H. Haynes, 1998: Dynamical forcing of stratospheric planetary waves by tropospheric baroclinic eddies. J. Atmos. Sci., 55, 23612392.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., , and P. H. Haynes, 1998: Internal interannual variability of the extratropical stratospheric circulation: The low-latitude flywheel. Quart. J. Roy. Meteor. Soc., 124, 21492173.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., , and L. M. Polvani, 2004: Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett., 31, L02115, doi:10.1029/2003GL017965.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., , and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 27582776.

    • Search Google Scholar
    • Export Citation
  • Song, Y., , and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , and W. A. Robinson, 2009: Downward influence of stratospheric final warming events in an idealized model. Geophys. Res. Lett., 36, L03819, doi:10.1029/2008GL036624.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , W. A. Robinson, , and G. Chen, 2011: The role of planetary waves in the downward influence of stratospheric final warming events. J. Atmos. Sci., 68, 28262843.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., , T. Yamaga, , and S. Yoden, 2001: Internal variability of the troposphere–stratosphere coupled system simulated in a simple global circulation model. J. Atmos. Sci., 58, 31843203.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., , W. J. Randel, , S. Pawson, , P. A. Newman, , and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27 19127 201.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., 1987: Bifurcation properties of a stratospheric vacillation model. J. Atmos. Sci., 44, 17231733.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 4
PDF Downloads 16 16 4

The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 2 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 3 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
© Get Permissions
Restricted access

Abstract

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the model, a number of forecast experiments are performed from 10 or 20 days prior to the warming onset with perturbations in the troposphere and in the stratosphere separately. It is found that the stratosphere affects predictions of warming onset primarily by providing the initial state of the zonal winds, while the tropospheric initial conditions have a large impact through the generation and propagation of planetary waves. These results correspond to the roles played by the initial zonal flow and the evolution of eddy forcings in a zonally symmetric model. The initial stratospheric zonal flow has some influence on stratospheric wave driving, but in most cases this does not significantly affect the timing of the warming, except when the initial condition is close to the onset date. These results highlight the role of the troposphere in determining stratospheric planetary wave driving and support the importance of tropospheric precursors to the stratospheric warming events.

Corresponding author address: Lantao Sun, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: ls544@cornell.edu

Abstract

The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the model, a number of forecast experiments are performed from 10 or 20 days prior to the warming onset with perturbations in the troposphere and in the stratosphere separately. It is found that the stratosphere affects predictions of warming onset primarily by providing the initial state of the zonal winds, while the tropospheric initial conditions have a large impact through the generation and propagation of planetary waves. These results correspond to the roles played by the initial zonal flow and the evolution of eddy forcings in a zonally symmetric model. The initial stratospheric zonal flow has some influence on stratospheric wave driving, but in most cases this does not significantly affect the timing of the warming, except when the initial condition is close to the onset date. These results highlight the role of the troposphere in determining stratospheric planetary wave driving and support the importance of tropospheric precursors to the stratospheric warming events.

Corresponding author address: Lantao Sun, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853. E-mail: ls544@cornell.edu
Save