• Benkert, C., , M. O. Scully, , A. A. Rangwala, , and W. Schleich, 1990: Quantum-noise suppression in lasers via memory-correlation effects. Phys. Rev., 42A, 15031514.

    • Search Google Scholar
    • Export Citation
  • Chandrasekhar, S., 1943: Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15, 189.

  • Einstein, A., 1905: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322, 549560.

    • Search Google Scholar
    • Export Citation
  • Gary, B., 2006: Mesoscale temperature fluctuations in the stratosphere. Atmos. Chem. Phys., 6, 45774589.

  • Gayet, J.-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the Southern Hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132, 27192748.

    • Search Google Scholar
    • Export Citation
  • Haag, W., , and B. Kärcher, 2004: The impact of aerosols and gravity waves on cirrus clouds at midlatitudes. J. Geophys. Res., 109, D12202, doi:10.1029/2004JD004579.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., , and R. J. Charlson, 2009: Introduction. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation. J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 1–15.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part II: The structure and circulation of the cirrus uncinus generating head. J. Atmos. Sci., 4, 809819.

    • Search Google Scholar
    • Export Citation
  • Hoyle, C. R., , B. P. Luo, , and T. Peter, 2005: The origin of high ice crystal number densities in cirrus clouds. J. Atmos. Sci., 62, 25682579.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , and J. Ström, 2003: The roles of dynamical variability and aerosols in cirrus cloud formation. Atmos. Chem. Phys., 3, 823838.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , and W. Haag, 2004: Factors controlling upper tropospheric relative humidity. Ann. Geophys., 22, 705715.

  • Kärcher, B., , and U. Burkhardt, 2008: A cirrus cloud scheme for general circulation models. Quart. J. Roy. Meteor. Soc., 134, 14391461.

    • Search Google Scholar
    • Export Citation
  • Koop, T., , B. P. Luo, , A. Tsias, , and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611614.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761.

  • Marti, J., , and K. Mauersberger, 1993: A survey and new measurements of ice vapor pressure at temperatures between 170 and 250 K. Geophys. Res. Lett., 20, 363366.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., , H. Brogniez, , and R. Roca, 2007: On the relative humidity of the atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. Sobel, Eds., Princeton University Press, 143–185.

    • Search Google Scholar
    • Export Citation
  • Quante, M., , and D. O. Starr, 2002: Dynamical processes in cirrus clouds. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 346–374.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , D. O. Starr, , and T. Uttal, 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci., 46, 371396.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227.

  • Siebesma, A. P., and Coauthors, 2009: Cloud-controlling factors. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 269–290.

    • Search Google Scholar
    • Export Citation
  • Sölch, I., , and B. Kärcher, 2011: Process-oriented large eddy simulations of a midlatitude cirrus cloud system based on observations. Quart. J. Roy. Meteor. Soc., 137, 374393.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Atmospheric Aerosols. Developments in Atmospheric Sciences Series, Vol. 7, Elsevier, 302 pp.

  • Uhlenbeck, G. E., , and L. S. Ornstein, 1930: On the theory of Brownian motion. Phys. Rev., 36, 823841.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 2
PDF Downloads 6 6 3

Supersaturation Fluctuations in Cirrus Clouds Driven by Colored Noise

View More View Less
  • 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Wessling, Germany
© Get Permissions
Restricted access

Abstract

Fundamental properties of ice supersaturation variability in cirrus clouds are studied by means of an idealized probabilistic model. Damped supersaturation fluctuations are assumed to be exponentially correlated in time, statistically stationary, and normally distributed. The damping process is tied to the ability of the ice crystals to scavenge water vapor. The temporal evolution of supersaturation separates into an early ballistic and a late asymptotic regime. The latter allows for a stationary solution for the probability distribution of supersaturation in the presence of cloud ice and corresponds to a diffusive solution in cloud-free conditions. Low ice crystal number densities, small ice crystal sizes, short supersaturation correlation times, and large fluctuation intensities favor the spreading of cirrus ice crystal sizes, especially in conditions conducive to sublimation. Otherwise, size spreading of ice crystals is hampered by ice-induced damping of supersaturation fluctuations. The spreading of the probability distributions of ice supersaturation for very weak damping may lead to an increase of cirrus fractional coverage, as parameterized in large-scale atmospheric models, even for small mean supersaturations.

Corresponding author address: Bernd Kärcher, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Wessling 82234, Germany. E-mail: bernd.kaercher@dlr.de

Abstract

Fundamental properties of ice supersaturation variability in cirrus clouds are studied by means of an idealized probabilistic model. Damped supersaturation fluctuations are assumed to be exponentially correlated in time, statistically stationary, and normally distributed. The damping process is tied to the ability of the ice crystals to scavenge water vapor. The temporal evolution of supersaturation separates into an early ballistic and a late asymptotic regime. The latter allows for a stationary solution for the probability distribution of supersaturation in the presence of cloud ice and corresponds to a diffusive solution in cloud-free conditions. Low ice crystal number densities, small ice crystal sizes, short supersaturation correlation times, and large fluctuation intensities favor the spreading of cirrus ice crystal sizes, especially in conditions conducive to sublimation. Otherwise, size spreading of ice crystals is hampered by ice-induced damping of supersaturation fluctuations. The spreading of the probability distributions of ice supersaturation for very weak damping may lead to an increase of cirrus fractional coverage, as parameterized in large-scale atmospheric models, even for small mean supersaturations.

Corresponding author address: Bernd Kärcher, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Wessling 82234, Germany. E-mail: bernd.kaercher@dlr.de
Save