• Abdul-Razzak, H., , S. J. Ghan, , and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. 1. Single aerosol type. J. Geophys. Res., 103, 61236131.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1997: Trade cumulus: Observations and modeling. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic, 99–126.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., , S. G. Lasher-Trapp, , W. A. Cooper, , C. A. Knight, , and J. Latham, 2003: The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds. J. Atmos. Sci., 60, 25572572.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., , G. G. Carrió, , W. R. Cotton, , and S. M. Saleeby, 2009: Influence of cloud condensation and giant cloud condensation nuclei on the development of precipitating trade wind cumuli in a large eddy simulation. J. Geophys. Res., 114, D08201, doi:10.1029/2008JD011011.

    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., , J.-P. Pinty, , and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 33483357.

    • Search Google Scholar
    • Export Citation
  • Cólon-Robles, Marilé, , R. M. Rauber, , and J. B. Jensen, 2006: Influence of low-level wind speed on droplet spectra near cloud base in trade wind cumulus. Geophys. Res. Lett., 33, L20814, doi:10.1029/2006GL027487.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., , R. T. Bruintjes, , and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., 2009: Investigating the simulation of cloud microphysical processes in numerical model using a one-dimensional dynamical framework. Atmos. Sci. Lett., 10, 207214.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Feingold, G., , W. R. Cotton, , S. M. Kreidenweis, , and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , I. Koren, , H. Wang, , H. Xue, , and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852, doi:10.1038/nature09314.

    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., , G. M. Frick, , J. B. Jensen, , and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., , G. Guzman, , and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55, 33403347.

    • Search Google Scholar
    • Export Citation
  • Göke, S., , H. T. Ochs III, , and R. M. Rauber, 2007: Radar analysis of precipitation initiation in maritime versus continental clouds near the Florida coast: Inferences concerning the role of CCN and giant nuclei. J. Atmos. Sci., 64, 36953707.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., , and S. S. Yum, 2001: Maritime–continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915926.

  • Hudson, J. G., , and S. Mishra, 2007: Relationships between CCN and cloud microphysics variations in clean maritime air. Geophys. Res. Lett., 34, L16804, doi:10.1029/2007GL030044.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., , S. Noble, , V. Jha, , and S. Mishra, 2009: Correlations of small cumuli droplet and drizzle drop concentrations with cloud condensation nuclei concentrations. J. Geophys. Res., 114, D05201, doi:10.1029/2008JD010581.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., 1988: The formation of rain in convective clouds. Nature, 336, 754756.

  • Ivanova, E. T., , Y. L. Kogan, , I. P. Mazin, , and M. S. Permyakov, 1977: Method of parameterizing the condensation process of droplet growth in numerical models. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 13, 821826.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , and I. Koren, 2009: Effect of aerosol on trade cumulus cloud morphology. J. Geophys. Res., 114, D11209, doi:10.1029/2009JD011750.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448460.

  • Khairoutdinov, M. F., , and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , L. J. Miller, , and R. A. Rilling, 2008: Aspects of precipitation development in trade wind cumulus revealed by differential reflectivity at S band. J. Atmos. Sci., 65, 25632580.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2006: Large eddy simulation of air parcels in stratocumulus clouds: Time scales and spatial variability. J. Atmos. Sci., 63, 952967.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., , D. K. Lilly, , Z. N. Kogan, , and V. V. Filyushkin, 1994: The effect of CCN regeneration on the evolution of stratocumulus cloud layers. Atmos. Res., 33, 137150.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., , M. P. Khairoutdinov, , D. K. Lilly, , Z. N. Kogan, , and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Laird, N. F., , H. T. Ochs III, , R. M. Rauber, , and L. J. Miller, 2000: Initial precipitation formation in warm Florida cumulus. J. Atmos. Sci., 57, 37403751.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., , C. A. Knight, , and J. M. Straka, 2001: Early radar echoes from ultragiant aerosol in a cumulus congestus: Modeling and observations. J. Atmos. Sci., 58, 35453561.

    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., , and S. E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review. Geophys. Monogr., Vol. 152, Amer. Geophys. Union, 413 pp.

    • Search Google Scholar
    • Export Citation
  • Lowenstein, J. H., , A. M. Blyth, , and R. P. Lawson, 2010: Early evolution of the largest-sized droplets in maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 136, 708717.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , I. M. Held, , M. Zhao, , D. L. Williamson, , J. G. Olson, , and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., , B. Stevens, , and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., , M. H. Smith, , I. E. Consterdine, , and J. A. Lowe, 1997: Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmos. Environ., 31, 7380.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928.

    • Search Google Scholar
    • Export Citation
  • Reiche, C. H., , and S. Lasher-Trapp, 2010: The minor importance of giant aerosol to precipitation development within small trade wind cumuli observed during RICO. Atmos. Res., 95, 386399.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , C. Yeh, , J. S. Malkus, , and N. E. LaSeur, 1951: The north-east trade of the Pacific Ocean. Quart. J. Roy. Meteor. Soc., 77, 598626.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., , and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer Academic, 441–486.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and W. W. Grabowski, 1990: The multi-dimensional positive definite advection transport algorithm: Non-oscillatory option. J. Comput. Phys., 86, 355375.

    • Search Google Scholar
    • Export Citation
  • Snider, J. R., , S. Guibert, , J.-L. Brenguier, , and J.-P. Putaud, 2003: Aerosol activation in marine stratocumulus clouds: 2. Köhler and parcel theory closure studies. J. Geophys. Res., 108, 8629, doi:10.1029/2002JD002692.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, E. R., , L. Di Girolamo, , and R. M. Rauber, 2009: Precipitation characteristics of trade wind clouds during RICO derived from radar, satellite, and aircraft measurements. J. Appl. Meteor. Climatol., 48, 464483.

    • Search Google Scholar
    • Export Citation
  • Stein, U., , and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115.

  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643.

  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243249.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , J. T. Bacmeister, , J. T. Kiehl, , I. M. Held, , M. Zhao, , S. A. Klein, , and B. A. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279.

    • Search Google Scholar
    • Export Citation
  • Zhao, G., , and L. Di Girolamo, 2007: Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic. J. Geophys. Res., 112, D10204, doi:10.1029/2006JD007371.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 8
PDF Downloads 44 44 3

Effects of Sea-Salt Aerosols on Precipitation in Simulations of Shallow Cumulus

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, and Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 2 Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas
  • | 3 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

A suite of large-eddy simulations with size-resolving microphysical processes was performed in order to assess effects of sea-salt aerosols on precipitation process in trade cumulus. Simulations based on observations from the Rain in Cumulus over the Ocean (RICO) field campaign explored the effects of adding sea-salt nuclei in different size ranges by following the evolution of 369 cloud cells over the 24-h simulation period. The addition of large (small) sea-salt nuclei tends to accelerate (suppress) precipitation formation; however, in marine environments the sea-salt spectra always include a combination of both small (film) and large (jet) nuclei. When realistic sea-salt spectra are specified as a function of surface wind, the effect of the larger nuclei to enhance the precipitation predominates, and accumulated precipitation increases with wind speed. This effect, however, is strongly influenced by the choice of background CCN spectrum. Adding the same sea-salt specification to an environment with a higher background aerosol load results in a decrease in accumulated precipitation with increasing surface wind speed.

Results also suggest that the slope of the relationship between vertical velocity W and the concentration of embryonic precipitation particles at cloud base Nr may indicate the role of sea-salt nuclei. A negative slope (Nr decreasing with increasing W) points to the predominance of small sea-salt nuclei, in which larger updrafts activate a greater number of smaller cloud drops with smaller coalescence efficiencies, resulting in fewer embryonic rain drops. A positive slope, on the other hand, indicates the presence of large sea-salt nuclei, which are the source of embryonic rain drops.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu

Abstract

A suite of large-eddy simulations with size-resolving microphysical processes was performed in order to assess effects of sea-salt aerosols on precipitation process in trade cumulus. Simulations based on observations from the Rain in Cumulus over the Ocean (RICO) field campaign explored the effects of adding sea-salt nuclei in different size ranges by following the evolution of 369 cloud cells over the 24-h simulation period. The addition of large (small) sea-salt nuclei tends to accelerate (suppress) precipitation formation; however, in marine environments the sea-salt spectra always include a combination of both small (film) and large (jet) nuclei. When realistic sea-salt spectra are specified as a function of surface wind, the effect of the larger nuclei to enhance the precipitation predominates, and accumulated precipitation increases with wind speed. This effect, however, is strongly influenced by the choice of background CCN spectrum. Adding the same sea-salt specification to an environment with a higher background aerosol load results in a decrease in accumulated precipitation with increasing surface wind speed.

Results also suggest that the slope of the relationship between vertical velocity W and the concentration of embryonic precipitation particles at cloud base Nr may indicate the role of sea-salt nuclei. A negative slope (Nr decreasing with increasing W) points to the predominance of small sea-salt nuclei, in which larger updrafts activate a greater number of smaller cloud drops with smaller coalescence efficiencies, resulting in fewer embryonic rain drops. A positive slope, on the other hand, indicates the presence of large sea-salt nuclei, which are the source of embryonic rain drops.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd., Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu
Save