• Barry, L., , G. C. Craig, , and J. Thuburn, 2000: A GCM investigation into the nature of baroclinic adjustment. J. Atmos. Sci., 57, 11411155.

    • Search Google Scholar
    • Export Citation
  • Bartels, J., , D. Peters, , and G. Schmitz, 1998: Climatological Ertel’s potential-vorticity flux and mean meridional circulation in the extratropical troposphere–lower stratosphere. Ann. Geophys., 16, 250265.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 2009: A theory of baroclinic turbulence. J. Atmos. Sci., 66, 24442454.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1978: The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterizations. J. Atmos. Sci., 35, 572576.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci., 39, 412417.

  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous baroclinically unstable flow on a beta plane. J. Atmos. Sci., 53, 946952.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697.

    • Search Google Scholar
    • Export Citation
  • James, I. N., , and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112, 12311250.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., , and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., , and R. A. Plumb, 2004: Isentropic zonal average formalism and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130, 16311653.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., , and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and T. Radko, 2003: Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., , and T. Schneider, 2009: Scales of linear baroclinic instability and macroturbulence in dry atmospheres. J. Atmos. Sci., 66, 18211833.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy–eddy interactions. Geophys. Res. Lett., 34, L22801, doi:10.1029/2007GL031779.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., , and I. M. Held, 1988: Baroclinic eddy fluxes in a one-dimensional model of quasi-geostrophic turbulence. J. Atmos. Sci., 45, 33543365.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., , and I. Held, 1996: The diffusive approximation for eddy fluxes in baroclinically unstable jets. J. Atmos. Sci., 53, 12621272.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., , and W. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367.

  • Schneider, T., 2004: The tropopause and the thermal stratification in the extratropics of a dry atmosphere. J. Atmos. Sci., 61, 13171340.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62, 18841900.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63, 15691586.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , and J. Liu, 2009: Formation of jets and equatorial super rotation on Jupiter. J. Atmos. Sci., 66, 579601.

  • Scott, R., , and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1970: Smoothing, filtering, and boundary effects. Rev. Geophys. Space Phys., 8, 359387.

  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683.

  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405418.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561571.

  • Thompson, A. F., , and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci., 54, 869882.

  • Tulloch, R., , J. Marshall, , C. Hill, , and K. S. Smith, 2011: Scales, growth rates and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., 2008: The sensitivity of the isentropic slope in a primitive equation dry model. J. Atmos. Sci., 65, 4365.

  • Zurita-Gotor, P., , and R. S. Lindzen, 2007: Theories of baroclinic adjustment and eddy equilibration. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 22–46.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , and G. K. Vallis, 2011: Dynamics of midlatitude tropopause height in an idealized model. J. Atmos. Sci., 68, 823838.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 4
PDF Downloads 24 24 5

Macroturbulent Equilibration in a Thermally Forced Primitive Equation System

View More View Less
  • 1 Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed ocean–atmosphere state. It has been argued that eddy fluxes keep the midlatitude atmosphere in a state that is marginally critical to baroclinic instability, which provides a powerful constraint on the response of the atmosphere to changes in external forcing. No comparable criterion appears to exist for the ocean. This is particularly surprising for the Southern Ocean, a region whose dynamics are very similar to the midlatitude atmosphere, but observations and numerical models suggest that the currents are supercritical.

This paper aims to resolve this apparent contradiction using a combination of theoretical considerations and eddy-resolving numerical simulations. It is shown that both marginally critical and supercritical mean states can be obtained in an idealized diabatically forced (and thus atmosphere-like) Boussinesq system, if the thermal expansion coefficient is varied from large atmosphere-like values to small oceanlike values. The argument is made that the difference in the thermal expansion coefficient dominantly controls the difference in the deformation scale between the two fluids and ultimately renders eddies ineffective in maintaining a marginally critical state in the limit of small thermal expansion coefficients.

Corresponding author address: Malte Jansen, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 54-1615, Cambridge, MA 02139. E-mail: mfjansen@mit.edu

Abstract

A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed ocean–atmosphere state. It has been argued that eddy fluxes keep the midlatitude atmosphere in a state that is marginally critical to baroclinic instability, which provides a powerful constraint on the response of the atmosphere to changes in external forcing. No comparable criterion appears to exist for the ocean. This is particularly surprising for the Southern Ocean, a region whose dynamics are very similar to the midlatitude atmosphere, but observations and numerical models suggest that the currents are supercritical.

This paper aims to resolve this apparent contradiction using a combination of theoretical considerations and eddy-resolving numerical simulations. It is shown that both marginally critical and supercritical mean states can be obtained in an idealized diabatically forced (and thus atmosphere-like) Boussinesq system, if the thermal expansion coefficient is varied from large atmosphere-like values to small oceanlike values. The argument is made that the difference in the thermal expansion coefficient dominantly controls the difference in the deformation scale between the two fluids and ultimately renders eddies ineffective in maintaining a marginally critical state in the limit of small thermal expansion coefficients.

Corresponding author address: Malte Jansen, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 54-1615, Cambridge, MA 02139. E-mail: mfjansen@mit.edu
Save