• Ancell, B. C., , and C. F. Mass, 2006: Structure, growth rates, and tangent linear accuracy of adjoint sensitivities with respect to horizontal and vertical resolution. Mon. Wea. Rev., 134, 29712988.

    • Search Google Scholar
    • Export Citation
  • Ancell, B. C., , and C. F. Mass, 2008: The variability of adjoint sensitivity with respect to model physics and basic-state trajectory. Mon. Wea. Rev., 136, 46124628.

    • Search Google Scholar
    • Export Citation
  • Badger, J., , and B. J. Hoskins, 2000: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 3849.

  • Barkmeijer, J., , M. van Gijzen, , and F. Bouttier, 1998: Singular vectors and estimates of the analysis error covariance metric. Quart. J. Roy. Meteor. Soc., 124, 16951713.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., , R. Buizza, , and T. N. Palmer, 1999: 3D-Var Hessian singular vectors and their potential use in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 23332351.

    • Search Google Scholar
    • Export Citation
  • Barkmeijer, J., , R. Buizza, , T. N. Palmer, , K. Puri, , and J.-F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127, 685708.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., , and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962.

    • Search Google Scholar
    • Export Citation
  • Berliner, M. L., , Z.-Q. Lu, , and C. Snyder, 1999: Statistical design for adaptive weather observations. J. Atmos. Sci., 56, 25362552.

  • Brown, D. P., 2006: Tropical cyclone report: Hurricane Helene. National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/pdf/TCR-AL092006_Helene.pdf.]

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1994: Localization of optimal perturbations using a projection operator. Quart. J. Roy. Meteor. Soc., 120, 16471681.

  • Buizza, R., 1995: Optimal perturbation time evolution and sensitivity of ensemble prediction to perturbation amplitude. Quart. J. Roy. Meteor. Soc., 121, 17051738.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , J. Tribbia, , F. Molteni, , and T. N. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tellus, 45A, 388407.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , R. Gelaro, , F. Molteni, , and T. Palmer, 1997: The impact of increased resolution on predictability studies with singular vectors. Quart. J. Roy. Meteor. Soc., 123, 10071033.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., , M. Leutbecher, , and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 20512066.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , M. S. Peng, , C. A. Reynolds, , and C.-C. Wu, 2009: Interpretation of tropical cyclone forecast sensitivity from the singular vector perspective. J. Atmos. Sci., 66, 33833400.

    • Search Google Scholar
    • Export Citation
  • Coutinho, M. M., , B. J. Hoskins, , and R. Buizza, 2004: The influence of physical processes on extratropical singular vectors. J. Atmos. Sci., 61, 195209.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., , and J. Tribbia, 1997: Optimal prediction of forecast error covariance through singular vectors. J. Atmos. Sci., 54, 286313.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591.

  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686.

  • Gilmour, I., , L. A. Smith, , and R. Buizza, 2001: Linear regime duration: Is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sci., 58, 35253539.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , R. Buizza, , and T. N. Palmer, 1995: Singular vectors: The effect of spatial scale on linear growth of disturbances. J. Atmos. Sci., 52, 38853894.

    • Search Google Scholar
    • Export Citation
  • Hodyss, D., , and S. J. Majumdar, 2007: The contamination of ‘data impact’ in global models by rapidly growing mesoscale instabilities. Quart. J. Roy. Meteor. Soc., 133, 18651875.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , R. Buizza, , and J. Badger, 2000: The nature of singular vector growth and structure. Quart. J. Roy. Meteor. Soc., 126, 15651580.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., , and A. J. Thorpe, 1992: The three-dimensional nature of ‘symmetric’ instability. Quart. J. Roy. Meteor. Soc., 118, 227258.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kim, H. M., , and B.-J. Jung, 2009a: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525543.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., , and B.-J. Jung, 2009b: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505524.

    • Search Google Scholar
    • Export Citation
  • Komori, T., , and T. Kadowaki, 2010: Resolution dependence of singular vectors computed for Typhoon Sinlaku. SOLA, 6, 4548.

  • Kwon, Y. C., , and W. M. Frank, 2005: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part I: Dry experiments. J. Atmos. Sci., 62, 39553973.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y. C., , and W. M. Frank, 2008: Dynamic instabilities of simulated hurricane-like vortices and their impacts on the core structure of hurricanes. Part II: Moist experiments. J. Atmos. Sci., 65, 106122.

    • Search Google Scholar
    • Export Citation
  • Lawrence, A. R., , M. Leutbecher, , and T. N. Palmer, 2009: The characteristics of Hessian singular vectors using an advanced data assimilation scheme. Quart. J. Roy. Meteor. Soc., 135, 11171132.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2003: A reduced rank estimate of forecast error variance changes due to intermittent modifications of the observing network. J. Atmos. Sci., 60, 729742.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., 2005: On ensemble prediction using singular vectors started from forecasts. Mon. Wea. Rev., 133, 30383046.

  • Leutbecher, M., 2007: On the representation of initial uncertainties with multiple sets of singular vectors optimized for different criteria. Quart. J. Roy. Meteor. Soc., 133, 20452056.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., , and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539.

  • Lopez, P., , and E. Moreau, 2005: A convection scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 131, 409436.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of predictability of a 28-variable atmospheric model. Tellus, 17, 321333.

  • Mahfouf, J.-F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A, 147166.

  • Montgomery, M. T., , and L. J. Shapiro, 1995: Generalized Charney–Stern and Fjortoft theorems for rapidly rotating vortices. J. Atmos. Sci., 52, 18291833.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and B. F. Farrell, 1999: Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci., 56, 12821307.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020.

    • Search Google Scholar
    • Export Citation
  • Orr, W. M., 1907: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: A perfect liquid. Proc. Roy. Irish Acad., A27, 969.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , R. Gelaro, , J. Barkmeijer, , and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633653.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., , and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 25082528.

    • Search Google Scholar
    • Export Citation
  • Puri, K., , J. Barkmeijer, , and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709731.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., , and T. E. Rosmond, 2003: Nonlinear growth of singular-vector-based perturbations. Quart. J. Roy. Meteor. Soc., 129, 30593078.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., , R. Gelaro, , and J. D. Doyle, 2001: Relationship between singular vectors and transient features in the background flow. Quart. J. Roy. Meteor. Soc., 127, 17311760.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., , M. S. Peng, , S. J. Majumdar, , S. D. Aberson, , C. H. Bishop, , and R. Buizza, 2007: Interpretation of adaptive observing guidance for Atlantic tropical cyclones. Mon. Wea. Rev., 135, 40064029.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., , and P. N. Schumacher, 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732.

  • Tippett, M. K., 1999: Transient moist baroclinic instability. Tellus, 51A, 273288.

  • Tompkins, A. M., , and M. Janiskova, 2004: A cloud scheme for data assimilation: Description and initial tests. Quart. J. Roy. Meteor. Soc., 130, 24952517.

    • Search Google Scholar
    • Export Citation
  • van der Grijn, G., , J. E. Paulsen, , F. Lalaurette, , and M. Leutbecher, 2004: Early medium-range forecasts of tropical cyclones. ECMWF Newsletter, No. 102, ECMWF, Reading, United Kingdom 7–14.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., , and S. J. Majumdar, 2010: Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Wea. Rev., 138, 36343655.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, M., , D. S. Nolan, , M. Iskandarani, , S. J. Majumdar, , M. S. Peng, , and C. A. Reynolds, 2011: Singular vectors for tropical cyclone–like vortices in a nondivergent barotropic framework. J. Atmos. Sci., 68, 22732291.

    • Search Google Scholar
    • Export Citation
  • Zeng, Q.-C., 1983: The evolution of a Rossby-wave packet in a three-dimensional baroclinic atmosphere. J. Atmos. Sci., 40, 7384.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 2
PDF Downloads 12 12 2

Sensitivity, Structure, and Dynamics of Singular Vectors Associated with Hurricane Helene (2006)

View More View Less
  • 1 Institute for Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute for Technologie, Karlsruhe, Germany
  • | 2 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 3 Naval Research Laboratory, Monterey, California
© Get Permissions
Restricted access

Abstract

The sensitivity of singular vectors (SVs) associated with Hurricane Helene (2006) to resolution and diabatic processes is investigated. Furthermore, the dynamics of their growth are analyzed. The SVs are calculated using the tangent linear and adjoint model of the integrated forecasting system (IFS) of the European Centre for Medium-Range Weather Forecasts with a spatial resolution up to TL255 (~80 km) and 48-h optimization time. The TL255 moist (diabatic) SVs possess a three-dimensional spiral structure with significant horizontal and vertical upshear tilt within the tropical cyclone (TC). Also, their amplitude is larger than that of dry and lower-resolution SVs closer to the center of Helene. Both higher resolution and diabatic processes result in stronger growth being associated with the TC compared to other flow features. The growth of the SVs in the vicinity of Helene is associated with baroclinic and barotropic mechanisms. The combined effect of higher resolution and diabatic processes leads to significant differences of the SV structure and growth dynamics within the core and in the vicinity of the TC. If used to initialize ensemble forecasts with the IFS, the higher-resolution moist SVs cause larger spread of the wind speed, track, and intensity of Helene than their lower-resolution or dry counterparts. They affect the outflow of the TC more strongly, resulting in a larger downstream impact during recurvature. Increasing the resolution or including diabatic effects degrades the linearity of the SVs. While the impact of diabatic effects on the linearity is small at low resolution, it becomes large at high resolution.

Corresponding author address: Simon Lang, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT)–Campus Süd, 76128 Karlsruhe, Germany. E-mail: simon.lang@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

The sensitivity of singular vectors (SVs) associated with Hurricane Helene (2006) to resolution and diabatic processes is investigated. Furthermore, the dynamics of their growth are analyzed. The SVs are calculated using the tangent linear and adjoint model of the integrated forecasting system (IFS) of the European Centre for Medium-Range Weather Forecasts with a spatial resolution up to TL255 (~80 km) and 48-h optimization time. The TL255 moist (diabatic) SVs possess a three-dimensional spiral structure with significant horizontal and vertical upshear tilt within the tropical cyclone (TC). Also, their amplitude is larger than that of dry and lower-resolution SVs closer to the center of Helene. Both higher resolution and diabatic processes result in stronger growth being associated with the TC compared to other flow features. The growth of the SVs in the vicinity of Helene is associated with baroclinic and barotropic mechanisms. The combined effect of higher resolution and diabatic processes leads to significant differences of the SV structure and growth dynamics within the core and in the vicinity of the TC. If used to initialize ensemble forecasts with the IFS, the higher-resolution moist SVs cause larger spread of the wind speed, track, and intensity of Helene than their lower-resolution or dry counterparts. They affect the outflow of the TC more strongly, resulting in a larger downstream impact during recurvature. Increasing the resolution or including diabatic effects degrades the linearity of the SVs. While the impact of diabatic effects on the linearity is small at low resolution, it becomes large at high resolution.

Corresponding author address: Simon Lang, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT)–Campus Süd, 76128 Karlsruhe, Germany. E-mail: simon.lang@kit.edu

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save