• Bauer, M., , and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , G. J. Hakim, , K. R. Tyle, , M. A. Bedrick, , W. E. Bracken, , M. J. Dickinson, , and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , L. C. Shaffrey, , and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63, 815839.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., , and S. L. Gray, 2009: The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon. Wea. Rev., 137, 99115.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953.

  • Davis, C. A., , E. D. Grell, , and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 326.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., , K. A. Browning, , and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., , L. F. Bosart, , W. E. Bracken, , G. J. Hakim, , D. M. Schultz, , M. A. Bedrick, , and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254; Corrigendum, 20, 5208–5210.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., , and H. F. Dacre, 2006: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 132, 11191137.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., , O. Zolina, , and S. Grigoriev, 2001: Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data. Climate Dyn., 17, 795809.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., , P. J. Roebber, , and T. A. Bullock, 1992: The role of antecedent surface vorticity development as a conditioning process in explosive cyclone intensification. Mon. Wea. Rev., 120, 14651489.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. Berrisford, 1988: A potential vorticity perspective of the storm of 15–16 October 1987. Weather, 43, 122129.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., , D.-L. Zhang, , and J. R. Gyakum, 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127, 25462562.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , M. A. Shapiro, , and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , J. R. Gyakum, , and Z. Guo, 1995: A case of rapid continental mesoscale cyclogenesis. Part I: Model sensitivity experiments. Mon. Wea. Rev., 123, 970997.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., , and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690.

    • Search Google Scholar
    • Export Citation
  • Mass, C., , and B. Dotson, 2010: Major extratropical cyclones of the northwest United States: Historical review, climatology, and synoptic environment. Mon. Wea. Rev., 138, 24992527.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1990: Advances in knowledge and understanding of extratropical cyclones during the past quarter century: An overview. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 27–45.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., , M. T. Stoelinga, , and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913.

    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., , H. Wernli, , and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., 2008: On the relation of the number of extratropical cyclones to their sizes. Izv. Atmos. Ocean. Phys., 44, 273278.

  • Rudeva, I., , and S. K. Gulev, 2007: Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Wea. Rev., 135, 25682587.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., , and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., , and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , R. A. Petersen, , K. F. Brill, , P. J. Kocin, , and J. J. Tuccillo, 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 22272261.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., , and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., , and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., , S. Dirren, , M. A. Liniger, , and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , L. W. Uccellini, , and K. F. Brill, 1988: A model-based diagnostic study of the rapid development phase of the Presidents’ Day cyclone. Mon. Wea. Rev., 116, 23372365.

    • Search Google Scholar
    • Export Citation
  • Whittaker, L. M., , and L. H. Horn, 1984: Northern Hemisphere extratropical cyclone activity for four mid-season months. J. Climatol., 4, 297310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 139 20
PDF Downloads 121 121 25

A PV Perspective on the Vertical Structure of Mature Midlatitude Cyclones in the Northern Hemisphere

View More View Less
  • 1 Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
  • | 2 Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

Development of extratropical cyclones can be seen as an interplay of three positive potential vorticity anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced potential vorticity (PV), and a warm anomaly at the surface acting as a surrogate PV anomaly. This study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the PV anomalies of mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis.

A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies Δθ and vertical profiles of PV anomalies ΔPV are calculated at the time of the cyclones’ minimum SLP in a vertical cylinder around the surface cyclone center. To compare the cyclones’ characteristics they are grouped according to their location and intensity. Composite ΔPV profiles are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase.

In the mature stage all three anomalies are on average larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) at lower levels, and 1.5 versus 0.5 PVU at upper levels]. The regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of Δθ and low-level ΔPV are on average larger in the western parts of the oceans than in the eastern parts. Results for summer are qualitatively similar, except for distinctively weaker surface Δθ values.

Corresponding author address: Jana Čampa, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, D-55099 Mainz, Germany. E-mail: campa@uni-mainz.de

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Abstract

Development of extratropical cyclones can be seen as an interplay of three positive potential vorticity anomalies: an upper-level stratospheric intrusion, low-tropospheric diabatically produced potential vorticity (PV), and a warm anomaly at the surface acting as a surrogate PV anomaly. This study, based on the interim ECMWF Re-Analysis (ERA-Interim) dataset, quantifies the amplitude of the PV anomalies of mature extratropical cyclones in different regions in the Northern Hemisphere on a climatological basis.

A tracking algorithm is applied to sea level pressure (SLP) fields to identify cyclone tracks. Surface potential temperature anomalies Δθ and vertical profiles of PV anomalies ΔPV are calculated at the time of the cyclones’ minimum SLP in a vertical cylinder around the surface cyclone center. To compare the cyclones’ characteristics they are grouped according to their location and intensity. Composite ΔPV profiles are calculated for each region and intensity class at the time of minimum SLP and during the cyclone intensification phase.

In the mature stage all three anomalies are on average larger for intense than for weak winter cyclones [e.g., 0.6 versus 0.2 potential vorticity units (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) at lower levels, and 1.5 versus 0.5 PVU at upper levels]. The regional variability of the cyclones’ vertical structure and the profile evolution is prominent (cyclones in some regions are more sensitive to the amplitude of a particular anomaly than in other regions). Values of Δθ and low-level ΔPV are on average larger in the western parts of the oceans than in the eastern parts. Results for summer are qualitatively similar, except for distinctively weaker surface Δθ values.

Corresponding author address: Jana Čampa, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, D-55099 Mainz, Germany. E-mail: campa@uni-mainz.de

This article is included in the Predictability and Dynamics of Weather Systems in the Atlantic-European Sector (PANDOWAE) Special Collection.

Save