• Andrejczuk, M., , W. W. Grabowski, , S. P. Malinowski, , and P. K. Smolarkiewicz, 2006: Numerical simulation of cloud–clear air interfacial mixing: Effects on cloud microphysics. J. Atmos. Sci., 63, 32043225.

    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., , W. W. Grabowski, , S. P. Malinowski, , and P. K. Smolarkiewicz, 2009: Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing. J. Atmos. Sci., 66, 24932500.

    • Search Google Scholar
    • Export Citation
  • Arabas, S., , H. Pawlowska, , and W. W. Grabowski, 2009: Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO. Geophys. Res. Lett., 36, L11803, doi:10.1029/2009GL038257.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., , and J. Latham, 1985: An airborne study of vertical structure and microphysical variability within a small cumulus. Quart. J. Roy. Meteor. Soc., 111, 773792.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., , and J. Latham, 1991: A climatological parameterization for cumulus clouds. J. Atmos. Sci., 48, 23672371.

  • Blyth, A. M., , S. G. Lasher-Trapp, , and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., , and W. W. Grabowski, 1993: Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework. J. Atmos. Sci., 50, 120136.

    • Search Google Scholar
    • Export Citation
  • Burnet, F., , and J. L. Brenguier, 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011.

    • Search Google Scholar
    • Export Citation
  • Chosson, F., , J.-L. Brenguier, , and M. Schröder, 2004: Radiative impact of mixing processes in boundary layer clouds. Proc. Int. Conf. on Clouds and Precipitation, Bologna, Italy, ICCP, 371–374.

    • Search Google Scholar
    • Export Citation
  • Chosson, F., , J.-L. Brenguier, , and L. Schüller, 2007: Entrainment-mixing and radiative transfer simulation in boundary-layer clouds. J. Atmos. Sci., 64, 26702682.

    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., , and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842.

    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., , G. M. Frick, , J. B. Jensen, , and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteor. Soc. Japan, 86A, 87106.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2006: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. J. Climate, 19, 46644682.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2007: Representation of turbulent mixing and buoyancy reversal in bulk cloud models. J. Atmos. Sci., 64, 36663680.

  • Grabowski, W. W., , and P. K. Smolarkiewicz, 1990: Monotone finite difference approximations to the advection-condensation problem. Mon. Wea. Rev., 118, 20822097.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and T. L. Clark, 1991: Cloud–environment interface instability: Rising thermal calculations in two spatial dimensions. J. Atmos. Sci., 48, 527546.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and T. L. Clark, 1993a: Cloud–environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and T. L. Clark, 1993b: Cloud–environment interface instability. Part III: Direct influence of environmental shear. J. Atmos. Sci., 50, 38213828.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and P. K. Smolarkiewicz, 1996: Two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Wea. Rev., 124, 487497.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and H. Morrison, 2011: Indirect impact of atmospheric aerosols in idealized simulations of convective–radiative quasi equilibrium. Part II: Double-moment microphysics. J. Climate, 24, 18971912.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , O. Thouron, , J.-P. Pinty, , and J.-L. Brenguier, 2010: A hybrid bulk–bin approach to model warm-rain processes. J. Atmos. Sci., 67, 385399.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , M. Andrejczuk, , and L.-P. Wang, 2011: Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res., 99, 290301.

    • Search Google Scholar
    • Export Citation
  • Heus, T., 2008: On the edge of a cloud. Ph.D. dissertation, TU Delft, 142 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/staff/heusthijs/heus2008d.pdf.]

    • Search Google Scholar
    • Export Citation
  • Heus, T., , and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018.

  • Heus, T., , C. F. J. Pols, , H. J. J. Jonker, , H. E. A. Van den Akken, , and D. H. Lenschow, 2008: Observational validation of the compensating mass flux through the shell around cumulus clouds. Quart. J. Roy. Meteor. Soc., 135, 101112.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., , G. Feingold, , and H. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., , and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4455.

    • Search Google Scholar
    • Export Citation
  • Jarecka, D., , W. W. Grabowski, , and H. Pawlowska, 2009: Modeling of subgrid-scale mixing in large-eddy simulation of shallow convection. J. Atmos. Sci., 66, 21252133.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., , and M. Baker, 1989: A simple model of droplet spectral evolution during turbulent mixing. J. Atmos. Sci., 46, 28122829.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., , P. Austin, , M. Baker, , and A. Blyth, 1985: Turbulent mixing, spectral evolution, and dynamics in warm cumulus cloud. J. Atmos. Sci., 42, 173192.

    • Search Google Scholar
    • Export Citation
  • Jonker, H. J. J., , T. Heus, , and P. P. Sullivan, 2008: A refined view of vertical mass transport by cumulus convection. Geophys. Res. Lett., 35, L07810, doi:10.1029/2007GL032606.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , and B. P. Briegleb, 1994: The simulated Earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99, 20 81520 827.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., , W. A. Cooper, , and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K., , H. Siebert, , and R. A. Shaw, 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659.

    • Search Google Scholar
    • Export Citation
  • Margolin, L. G., , P. K. Smolarkiewicz, , and Z. Sorbjan, 1999: Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D, 133, 390397.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., , and W. W. Grabowski, 2007: Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing. Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2007: Comparison of bulk and bin warm rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008a: Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2008b: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., , and C. A. Knight, 1984: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus. J. Atmos. Sci., 41, 18011815.

    • Search Google Scholar
    • Export Citation
  • Pawlowska, H., , and J.-L. Brenguier, 2000: Microphysical properties of stratocumulus clouds during ACE-2. Tellus, 52B, 868887.

  • Perry, K. D., , and P. V. Hobbs, 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53, 159174.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. B., , and A. P. Khain, 2002: Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteor. Soc., 128, 501533.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., , and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664.

  • Prusa, J. M., , P. K. Smolarkiewicz, , and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Comput. Fluids, 37, 11931207.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., , and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large-eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Slawinska, J., , W. W. Grabowski, , H. Pawlowska, , and A. A. Wyszogrodzki, 2008: Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation. J. Climate, 21, 16391647.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and L. G. Margolin, 1997: On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.–Ocean, 35, 127152.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , R. L. Walko, , W. R. Cotton, , and G. Feingold, 1996: The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124, 10341041.

    • Search Google Scholar
    • Export Citation
  • Su, C.-W., , S. K. Krueger, , P. A. McMurtry, , and P. H. Austin, 1998: Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds. Atmos. Res., 47–48, 4158.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 6, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and P. K. Smolarkiewicz, 2008: Instability and breakdown of a vertical vortex pair in a strongly stratified fluid. J. Fluid Mech., 606, 239273.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449457.

  • Warner, J., 1969a: The microstructure of cumulus cloud. Part I. General features of the droplet spectrum. J. Atmos. Sci., 26, 10491059.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1969b: The microstructure of cumulus cloud. Part II. The effect on droplet size distribution of the cloud nucleus spectrum and updraft velocity. J. Atmos. Sci., 26, 12721282.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., , and P. K. Smolarkiewicz, 2006: Direct numerical simulation of the Plumb–McEwan laboratory analog of the QBO. J. Atmos. Sci., 63, 32263252.

    • Search Google Scholar
    • Export Citation
  • Wyszogrodzki, A. A., , W. W. Grabowski, , and L.-P. Wang, 2011: Activation of cloud droplets in bin-microphysics simulation of shallow convection. Acta Geophysica, 59, 11681183, doi:10.2478/s11600-011-0052-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 19
PDF Downloads 43 43 14

Droplet Activation and Mixing in Large-Eddy Simulation of a Shallow Cumulus Field

View More View Less
  • 1 Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
  • | 3 Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • | 4 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This paper presents the application of a double-moment bulk warm-rain microphysics scheme to the simulation of a field of shallow convective clouds based on Barbados Oceanographic and Meteorological Experiment (BOMEX) observations. The scheme predicts the supersaturation field and allows secondary in-cloud activation of cloud droplets above the cloud base. Pristine and polluted cloud condensation nuclei (CCN) environments, as well as opposing subgrid-scale mixing scenarios, are contrasted. Numerical simulations show that about 40% of cloud droplets originate from CCN activated above the cloud base. Significant in-cloud activation leads to the mean cloud droplet concentration that is approximately constant with height, in agreement with aircraft observations. The in-cloud activation affects the spatial distribution of the effective radius and the mean albedo of the cloud field. Differences between pristine and polluted conditions are consistent with the authors’ previous study, but the impact of the subgrid-scale mixing is significantly reduced. Possible explanations of the latter involve physical and numerical aspects. The physical aspects include (i) the counteracting impacts of the subgrid-scale mixing and in-cloud activation and (ii) the mean characteristics of the environmental cloud-free air entrained into a cloud. A simple analysis suggests that the entrained cloud-free air is on average close to saturation, which leads to a small difference between various mixing scenarios. The numerical aspect concerns the relatively small role of the parameterized subgrid-scale mixing when compared to mixing and evaporation due to numerical diffusion. Although the results are consistent with aircraft observations, limitations of the numerical model due to low spatial resolution call for higher-resolution simulations where entrainment processes are resolved rather than mostly parameterized as in the current study.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Wojciech W. Grabowski, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: grabow@ncar.ucar.edu

Abstract

This paper presents the application of a double-moment bulk warm-rain microphysics scheme to the simulation of a field of shallow convective clouds based on Barbados Oceanographic and Meteorological Experiment (BOMEX) observations. The scheme predicts the supersaturation field and allows secondary in-cloud activation of cloud droplets above the cloud base. Pristine and polluted cloud condensation nuclei (CCN) environments, as well as opposing subgrid-scale mixing scenarios, are contrasted. Numerical simulations show that about 40% of cloud droplets originate from CCN activated above the cloud base. Significant in-cloud activation leads to the mean cloud droplet concentration that is approximately constant with height, in agreement with aircraft observations. The in-cloud activation affects the spatial distribution of the effective radius and the mean albedo of the cloud field. Differences between pristine and polluted conditions are consistent with the authors’ previous study, but the impact of the subgrid-scale mixing is significantly reduced. Possible explanations of the latter involve physical and numerical aspects. The physical aspects include (i) the counteracting impacts of the subgrid-scale mixing and in-cloud activation and (ii) the mean characteristics of the environmental cloud-free air entrained into a cloud. A simple analysis suggests that the entrained cloud-free air is on average close to saturation, which leads to a small difference between various mixing scenarios. The numerical aspect concerns the relatively small role of the parameterized subgrid-scale mixing when compared to mixing and evaporation due to numerical diffusion. Although the results are consistent with aircraft observations, limitations of the numerical model due to low spatial resolution call for higher-resolution simulations where entrainment processes are resolved rather than mostly parameterized as in the current study.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Wojciech W. Grabowski, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: grabow@ncar.ucar.edu
Save