• Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., , D. Rosenfeld, , P. Artaxo, , A. A. Costa, , G. P. Frank, , K. M. Longo, , and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., , Y.-H. Kim, , and H.-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteor., 40, 14621475.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., , Y.-H. Kim, , J.-J. Kim, , and J.-Y. Han, 2007: Effects of boundary-layer stability on urban heat island-induced circulation. Theor. Appl. Climatol., 89, 7381.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., , D. Rosenfeld, , K.-M. Kim, , J.-M. Yoo, , M.-I. Lee, , and M. Hahnenberger, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R., , and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., , R. T. Shealy, , and R. W. Scott, 1991: Precipitation changes in fall, winter, and spring caused by St. Louis. J. Appl. Meteor., 30, 126134.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., , and J.-J. Baik, 2008: A theoretical and numerical study of urban heat island–induced circulation and convection. J. Atmos. Sci., 65, 18591877.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , and F. Kimura, 2004: Urban effects on low-level clouds around the Tokyo metropolitan area on clear summer days. Geophys. Res. Lett., 31, L05103, doi:10.1029/2003GL018908.

    • Search Google Scholar
    • Export Citation
  • Jauregui, E., , and E. Romales, 1996: Urban effects on convective precipitation in Mexico City. Atmos. Environ., 30, 33833389.

  • Kar, S. K., , Y.-A. Liou, , and K.-J. Ha, 2009: Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Environ., 92, 8087.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , A. Pokrovsky, , M. Pinsky, , A. Seifert, , and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , N. BenMoshe, , and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , A. Pokrovsky, , U. Blahak, , and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146.

    • Search Google Scholar
    • Export Citation
  • Köhler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 11521161.

  • Koren, I., , Y. J. Kaufman, , D. Rosenfeld, , L. A. Remer, , and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Lacke, M. C., , T. L. Mote, , and J. M. Shepherd, 2009: Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ., 43, 43594373.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., , L. J. Donner, , V. T. J. Phillips, , and Y. Ming, 2008: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, doi:10.1029/2007JD009224.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., , T. Matsui, , R. A. Pielke Sr., , and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res., 111, D19204, doi:10.1029/2005JD006884.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., , A. P. Khain, , D. Rosenfeld, , and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Mote, T. L., , M. C. Lacke, , and J. M. Shepherd, 2007: Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophys. Res. Lett., 34, L20710, doi:10.1029/2007GL031903.

    • Search Google Scholar
    • Export Citation
  • Naccarato, K. P., , O. Pinto Jr., , and I. R. C. A. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett., 30, 1674, doi:10.1029/2003GL017496.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., , U. Blahak, , A. Seifert, , and K. D. Beheng, 2010: Simulations of a hailstorm and the impact of CCN using an advanced two-moment cloud microphysical scheme. Atmos. Res., 96, 286301.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , J. A. Smith, , L. Donner, , J. D. Fast, , W. I. Gustafson Jr., , E. G. Chapman, , and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 13671391.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 25972600.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , and A. P. Khain, 1998: Some effects of cloud turbulence on water-ice and ice-ice collisions. Atmos. Res., 47-48, 6986.

  • Pinsky, M., , A. P. Khain, , and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part I: Collision efficiency. Problem formulation and preliminary results. J. Atmos. Sci., 56, 25852600.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., , A. P. Khain, , and M. Shapiro, 2000: Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos. Res., 53, 131169.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rose, L. S., , J. A. Stallins, , and M. L. Bentley, 2008: Concurrent cloud-to-ground lightning and precipitation enhancement in the Atlanta, Georgia (United States), urban region. Earth Interactions, 12. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.

  • Rosenfeld, D., , U. Lohmann, , G. B. Raga, , C. D. O’Dowd, , M. Kulmala, , S. Fuzzi, , A. Reissell, , and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. R. Cotton, , and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716738.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., , and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions, 9. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , H. Pierce, , and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , X. Li, , A. P. Khain, , T. Matsui, , S. Lang, , and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., , and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1995: Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J. Appl. Meteor., 34, 16331642.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 16
PDF Downloads 86 86 9

A Numerical Study of Urban Aerosol Impacts on Clouds and Precipitation

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 2 Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

The impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision–coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr

Abstract

The impacts of urban aerosols on clouds and precipitation are investigated using a spectral (bin) microphysics cloud model. For this purpose, extensive numerical experiments with various aerosol concentrations are performed under different environmental moisture conditions. To take into account the urban heat island and urban air pollution, it is considered that there is low-level heating in the urban area and that the aerosol concentration in the urban area is higher than that in the surrounding rural area. Simulation results show that a low-level updraft induced by the urban heat island leads to the formation of a low-level cloud and then a deep convective cloud downwind of the urban area. The onset of precipitation produced by the low-level cloud is delayed at higher aerosol concentrations. This is because when the aerosol concentration is high, a narrow drop size distribution results in a suppressed collision–coalescence process and hence in late raindrop formation. However, after the deep convective cloud develops, a higher aerosol concentration generally leads to the development of a stronger convective cloud. This is mainly due to increased release of latent heat resulting from the enhanced condensation process with increasing aerosol concentration. The low collision efficiency of smaller cloud drops and the resulting stronger updraft at higher aerosol concentrations result in higher liquid water content at higher levels, leading to the enhanced riming process to produce large ice particles. The melting of a larger amount of hail leads to precipitation enhancement downwind of the urban area with increasing urban aerosol concentration in all moisture environments considered.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr
Save