• Ackermann, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Albrecht, B. A., , D. A. Randall, , and S. Nicholls, 1988: Observations of marine stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc., 69, 618626.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., , C. S. Bretherton, , D. Johnson, , W. H. Scubert, , and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Asano, S., , M. Shiobara, , and A. Uchiyama, 1995: Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds. J. Atmos. Sci., 52, 35563576.

    • Search Google Scholar
    • Export Citation
  • Bores, R., , and L. D. Rotstayn, 2001: Possible links between cloud optical depth and effective radius in remote sensing observations. Quart. J. Roy. Meteor. Soc., 127, 23672383.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., , H. Pawlowska, , L. Schüller, , R. Preusker, , J. Fischer, , and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., , H. Pawlowska, , and L. Schüller, 2003: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 108, 8632, doi:10.1029/2002JD002682.

    • Search Google Scholar
    • Export Citation
  • Breon, F.-M., , D. Tanré, , and S. Generoso, 2003: Aerosol effect on cloud droplet size monitored from satellite. Science, 295, 834838.

  • Choi, I.-J., , T. Iguchi, , S.-W. Kim, , S.-C. Yooh, , and T. Nakajima, 2010: Simulation of aerosol effect on the microphysical properties of shallow stratocumulus cloud over East Asia using a bin-based meso-scale cloud model. Atmos. Chem. Phys. Discuss., 10, 23 44923 495.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , S. M. Kreidenweis, , B. Stevens, , and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 (D16), 21 39121 402.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , I. Koren, , H. Wang, , H. Xue, , and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852, doi:10.1038/nature09314.

    • Search Google Scholar
    • Export Citation
  • Han, Q., , W. B. Rossow, , and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497.

    • Search Google Scholar
    • Export Citation
  • Han, Q., , W. B. Rossow, , J. Chou, , and R. M. Welch, 1998: Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP. J. Climate, 11, 15161528.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Nakajima, , A. P. Khain, , K. Saito, , T. Takemura, , and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., , and K. Saito, 1991: Description of a non-hydrostatic model developed at the forecast research department of MRI. Meteorological Research Institute Tech. Rep. 28, 238 pp.

    • Search Google Scholar
    • Export Citation
  • Ivanova, I. T., , and H. G. Leighton, 2008: Aerosol–cloud interactions in a mesoscale model. Part II: Sensitivity to aqueous-phase chemistry. J. Atmos. Sci., 65, 309330.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., , T. Nakajima, , and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14, 20452068.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , M. Ovtchinnikov, , M. Pinsky, , A. Pokrovsky, , and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , D. Rosenfeld, , and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Klein, S., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform cloud. J. Climate, 6, 15871606.

  • Kobayashi, T., , and K. Masuda, 2008: Effects of precipitation on the relationships between cloud optical thickness and drop size derived from space-borne measurements. Geophys. Res. Lett., 35, L24809, doi:10.1029/2008GL036140.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., , G. L. Stephens, , and C. Kummerow, 2008: Multisensor satellite observations of aerosol effects on warm clouds. J. Geophys. Res., 113, D15205, doi:10.1029/2008JD009876.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., , G. Tselioudis, , and C. Tyler, 2000: Why is the cloud albedo–particle size relationship different in optically thick and optically thin clouds? Geophys. Res. Lett., 27, 10991102.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , T. Y. Nakajima, , T. Nakajima, , M. Kachi, , and K. Suzuki, 2002: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measurement Mission (TRMM) Microwave Imager and Visible/Infrared Scanner. 2. Climatology of warm clouds and rain. J. Geophys. Res., 107, 4367, doi:10.1029/2001JD001269.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., , H. Masunaga, , and R. A. Pielke Sr., 2004: Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophys. Res. Lett., 31, L06109, doi:10.1029/2003GL019287.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., , and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132, 883896.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , and Y. L. Kogan, 2003: Simulating the transition from drizzling marine stratocumulus to boundary layer cumulus with a mesoscale model. Mon. Wea. Rev., 131, 23422360.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , P. C. Robinson, , and Y. L. Kogan, 2006: Processing of cloud condensation nuclei by collision–coalescence in a mesoscale model. J. Geophys. Res., 111, D18204, doi:10.1029/2006JD007183.

    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., , J. Brinkmann, , and H. R. Pruppacher, 1992: A wind tunnel study on the drop-to-particle conversion. J. Aerosol Sci., 23, 245256.

    • Search Google Scholar
    • Export Citation
  • Mocko, D. M., , and W. R. Cotton, 1995: Evaluation of fractional cloudiness parameterizations for use in mesoscale model. J. Atmos. Sci., 52, 28842901.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2007: Aerosol–cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys., 7, 30813101.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , M. D. King, , J. D. Spinhirne, , and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48, 728751.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , M. Tsukamoto, , Y. Tsushima, , A. Numaguti, , and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 48694878.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , A. Higurashi, , K. Kawamoto, , and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., , and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 40434059.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Quaas, J., , O. Boucher, , N. Bellouin, , and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298.

  • Sato, Y., , T. Nakajima, , K. Suzuki, , and T. Iguchi, 2009: Application of a Monte Carlo integration method to collision and coagulation growth processes of hydrometeors in a bin-type model. J. Geophys. Res., 114, D09215, doi:10.1029/2008JD011247.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., , and B. Stevens, 2008: The structure of mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , T. Nakajima, , K. Suzuki, , K. Kawamoto, , A. Higurashi, , D. Rosenfeld, , I. Sano, , and S. Mukai, 2003: A study of the direct and indirect effects of aerosols using global satellite datasets of aerosol and cloud parameters. J. Geophys. Res., 108, 4699, doi:10.1029/2002JD003359.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , A. Numaguti, , T. Takemura, , K. Kawamoto, , and A. Higurashi, 2004: A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation. J. Atmos. Sci., 61, 179194.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , T. Y. Nakajima, , and A. P. Khain, 2006: Correlation pattern between effective radius and optical thickness of water clouds simulated by a spectral bin microphysics cloud model. SOLA, 2, 116119, doi:10.2151/sola.2006-030.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , T. Y. Nakajima, , and A. P. Khain, 2010a: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics model. J. Atmos. Sci., 67, 11261141.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., , T. Nakajima, , T. Y. Nakajima, , and G. L. Stephens, 2010b: Effect of the droplet activation process on microphysical properties of warm clouds. Environ. Res. Lett., 5, 024012, doi:10.1088/1748-9326/5/2/024012.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nozawa, , S. Emori, , T. Y. Nakajima, , and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , X. Li, , A. Khain, , T. Matsui, , S. Lang, , and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • Wang, H., , and G. Feingold, 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and G. Feingold, 2009b: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , G. Feingold, , R. Wood, , and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , P. J. Rasch, , and G. Feingold, 2011: Manipulating marine stratocumulus cloud amount and albedo: A process-modeling study of aerosol–cloud–precipitation interactions in response to injection of cloud condensation nuclei. Atmos. Chem. Phys., 11, 42374249.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , B. A. Albrecht, , and P. Minnis, 1993: A regional simulation of marine boundary-layer clouds. J. Atmos. Sci., 50, 40224043.

  • Xue, H., , G. Feingold, , and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., 2003: Cloud microphysics (in Japanese). The JMA non-hydrostatic model, JMA Annual Rep. 49, 52–76.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 9
PDF Downloads 20 20 6

Characteristics of Correlation Statistics between Droplet Radius and Optical Thickness of Warm Clouds Simulated by a Three-Dimensional Regional-Scale Spectral Bin Microphysics Cloud Model

View More View Less
  • 1 * Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, and Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 3 Earth System Science Interdisciplinary Center, University of Maryland, College Park, and Laboratory for Atmosphere, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 School of Earth and Environmental Sciences, Seoul National University, Gwanak-gu, Seoul, South Korea
  • | 5 ** Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
© Get Permissions
Restricted access

Abstract

Three-dimensional downscaling simulations using a spectral bin microphysics (SBM) model were conducted to investigate the effects of aerosol amount and dynamical stabilities of the atmosphere on the correlation statistics between cloud droplet effective radius (RE) and cloud optical thickness (COT) of warm clouds off the coast of California. The regeneration process of aerosols was implemented into the SBM and was found to be necessary for simulating the satellite-observed microphysical properties of warm clouds by the SBM model used in this study.

The results showed that the aerosol amount changed the correlation statistics in a way that changes the cloud particle number concentration, whereas the inversion height of the boundary layer, which is related to the atmospheric stability and the cloud-top height, changed the correlation statistics in a way that changes the liquid water path. These results showed that the dominant mechanisms that control the correlation statistics are similar to those suggested by previous modeling studies based on two-dimensional idealized simulations. On the other hand, the present three-dimensional modeling was also able to simulate some realistic patterns of the correlation statistics, namely, mixtures of characteristic patterns and the “high-heeled” pattern as observed by satellite remote sensing.

Current affiliation: Jet Production Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Yousuke Sato, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. E-mail: satoy@aori.u-tokyo.ac.jp

Abstract

Three-dimensional downscaling simulations using a spectral bin microphysics (SBM) model were conducted to investigate the effects of aerosol amount and dynamical stabilities of the atmosphere on the correlation statistics between cloud droplet effective radius (RE) and cloud optical thickness (COT) of warm clouds off the coast of California. The regeneration process of aerosols was implemented into the SBM and was found to be necessary for simulating the satellite-observed microphysical properties of warm clouds by the SBM model used in this study.

The results showed that the aerosol amount changed the correlation statistics in a way that changes the cloud particle number concentration, whereas the inversion height of the boundary layer, which is related to the atmospheric stability and the cloud-top height, changed the correlation statistics in a way that changes the liquid water path. These results showed that the dominant mechanisms that control the correlation statistics are similar to those suggested by previous modeling studies based on two-dimensional idealized simulations. On the other hand, the present three-dimensional modeling was also able to simulate some realistic patterns of the correlation statistics, namely, mixtures of characteristic patterns and the “high-heeled” pattern as observed by satellite remote sensing.

Current affiliation: Jet Production Laboratory, California Institute of Technology, Pasadena, California.

Corresponding author address: Yousuke Sato, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan. E-mail: satoy@aori.u-tokyo.ac.jp
Save