• Allen, R. A., , and N. Nakamura, 2001: A seasonal climatology of effective diffusivity in the stratosphere. J. Geophys. Res., 106, 79177935.

    • Search Google Scholar
    • Export Citation
  • Apte, A., , R. de la Llave, , and N. P. Petrov, 2005: Regularity of critical invariant circles of the standard nontwist map. Nonlinearity, 18, 11731187.

    • Search Google Scholar
    • Export Citation
  • Arnold, V. I., , V. V. Kozlov, , and A. I. Neishtadt, 2006: Mathematical Aspects of Classical and Celestial Mechanics. Vol. 3, Encyclopedia of Mathematical Sciencies, 3rd ed. Springer-Verlag, 518 pp.

    • Search Google Scholar
    • Export Citation
  • Artale, V., , G. Boffetta, , A. Celani, , M. Cencini, , and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171.

    • Search Google Scholar
    • Export Citation
  • Balescu, R., 1998: Hamiltonian nontwist maps for magnetic field lines with locally reversed shear in toroidal geometry. Phys. Rev. E, 58, 37813792.

    • Search Google Scholar
    • Export Citation
  • Banfield, D., , P. J. Gierasch, , M. Bell, , E. Ustinov, , A. P. Ingersoll, , A. R. Vasavada, , R. A. West, , and M. J. S. Belton, 1998: Jupiter ’s cloud structure from Galileo imaging data. Icarus, 135, 230250.

    • Search Google Scholar
    • Export Citation
  • Beagley, S. R., , D. de Grandpré, , J. N. Koshyk, , N. A. McFarlane, , and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model. Atmos.–Ocean, 35, 293331.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., , I. Kamenkovich, , and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., , M. G. Brown, , M. J. Olascoaga, , I. I. Rypina, , H. Koçak, , and I. A. Udovydchenkov, 2008: Zonal jets as transport barriers in planetary atmospheres. J. Atmos. Sci., 65, 33163326.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., , M. J. Olascoaga, , M. G. Brown, , H. Koçak, , and I. I. Rypina, 2010: Invariant-tori-like Lagrangian coherent structures with application to geophysical flows. Chaos, 20, 017514, doi:10.1063/1.3271342.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., , G. Lacorata, , G. Redaelli, , and A. Vulpiani, 2001: Detecting barriers to transport: A review of different techniques. Physica D, 159, 5870.

    • Search Google Scholar
    • Export Citation
  • Boozer, A. H., 2004: Physics of magnetically confined plasmas. Rev. Mod. Phys., 76, 10711141.

  • Branicki, M., , and S. Wiggins, 2010: Finite-time Lagrangian transport analysis: Stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents. Nonlinear Processes Geophys., 17, 136.

    • Search Google Scholar
    • Export Citation
  • Carlson, B. E., , A. A. Lacis, , and W. B. Rossow, 1994: Belt-zone variations in the Jovian cloud structure. J. Geophys. Res., 99, 14 62314 658.

    • Search Google Scholar
    • Export Citation
  • Chirikov, B. V., 1979: A universal instability of many-dimensional oscillator systems. Phys. Rep., 52, 265379.

  • de Grandpré, J., , S. R. Beagley, , V. I. Fomichev, , E. Griffioen, , J. C. McConnell, , A. S. Medvedev, , and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105, 26 47526 492.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , C. R. Mechoso, , K. Ide, , R. Walterscheid, , and G. Schubert, 2009: Polar night vortex breakdown and large-scale stirring in the southern stratosphere. Climate Dyn., 35, 965975.

    • Search Google Scholar
    • Export Citation
  • del-Castillo-Negrete, D., 2000: Chaotic transport in zonal flows in analogous fluid and plasma systems. Phys. Plasmas, 7, 17021711.

  • del-Castillo-Negrete, D., , and P. J. Morrison, 1993: Chaotic transport by Rossby waves in shear flow. Phys. Fluids A, 5, 948965.

  • del-Castillo-Negrete, D., , J. M. Greene, , and P. J. Morrison, 1996: Area preserving nontwist maps: Periodic orbits and transition to chaos. Physica D, 91, 123.

    • Search Google Scholar
    • Export Citation
  • del-Castillo-Negrete, D., , J. M. Greene, , and P. J. Morrison, 1997: Renormalization and transition to chaos in area preserving nontwist maps. Physica D, 100, 311329.

    • Search Google Scholar
    • Export Citation
  • Delshams, A., , and R. de la Llave, 2000: KAM theory and a partial justification of Greene ’s criterion for non-twist maps. SIAM J. Math. Anal., 31, 12351269.

    • Search Google Scholar
    • Export Citation
  • Diamond, P. H., , S.-I. Itoh, , K. Itoh, , and T. S. Hahm, 2005: Zonal flows in plasma—A review. Plasma Phys. Controlled Fusion, 47, R35.

  • d ’Ovidio, F., , E. Shuckburgh, , and B. Legras, 2009: Local mixing events in the upper troposphere and lower stratosphere. Part I: Detection with the Lyapunov diffusivity. J. Atmos. Sci., 66, 36783694.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1988a: Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows. J. Fluid Mech., 191, 575581.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1988b: The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech., 194, 511547.

  • Dritschel, D. G., , and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., , D. E. Kinnison, , and T. G. Shepherd, 2005: Overview of planned coupled chemistry-climate simulations to support upcoming ozone and climate assessments. SPARC Newsletter, Vol. 25, Toronto, ON, Canada, 11–17. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/News25/overview.html.]

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2006: Assessment of temperature, trace species, and ozone in chemistry–climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.

    • Search Google Scholar
    • Export Citation
  • Gaidashev, D., , and H. Koch, 2004: Renormalization and shearless invariant tori: Numerical results. Nonlinearity, 17, 17131722.

  • Grant, W. B., , E. V. Browell, , C. S. Long, , L. L. Stowe, , R. G. Grainger, , and A. Lambert, 1996: Use of volcanic aerosols to study the tropical stratospheric reservoir. J. Geophys. Res., 101, 39733988.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2001a: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D, 149, 248277.

  • Haller, G., 2001b: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids, 13, 33653385.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2002: Lagrangian coherent structures from approximate velocity data. Phys. Fluids, 14, 18511861.

  • Haller, G., 2011: A variational theory of hyperbolic Lagrangian coherent structures. Physica D, 240, 574598.

  • Haller, G., , and G. Yuan, 2000: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D, 147, 352370.

  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293.

  • Haynes, P., , and E. Shuckburgh, 2000a: Effective diffusivity as a diagnostic of atmospheric transport. 1. Stratosphere. J. Geophys. Res., 105, 22 77722 794.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , and E. Shuckburgh, 2000b: Effective diffusivity as a diagnostic of atmospheric transport. 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 79522 810.

    • Search Google Scholar
    • Export Citation
  • Irwin, P. G. J., , A. L. Weir, , F. W. Taylor, , S. B. Calcutt, , and R. W. Carlson, 2001: The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity. Icarus, 149, 397415.

    • Search Google Scholar
    • Export Citation
  • Irwin, P. G. J., , K. Sihra, , N. Bowles, , F. W. Taylor, , and S. B. Calcutt, 2005: Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure. Icarus, 176, 255271.

    • Search Google Scholar
    • Export Citation
  • Joseph, B., , and B. Legras, 2002: Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J. Atmos. Sci., 59, 11981212.

    • Search Google Scholar
    • Export Citation
  • Juckes, N. M., , and M. E. McIntyre, 1987: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature, 328, 590596.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., , and B. Legras, 2002: Hyperbolic lines and the stratospheric polar vortex. Chaos, 12, 382394.

  • Lekien, F., , and S. D. Ross, 2010: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505, doi:10.1063/1.3278516.

    • Search Google Scholar
    • Export Citation
  • Marcus, P. S., , and C. Lee, 1998: A model for eastward and westward jets in laboratory experiments and planetary atmospheres. Phys. Fluids, 10, 14741489.

    • Search Google Scholar
    • Export Citation
  • Mathur, M., , G. Haller, , T. Peacock, , J. E. Ruppert-Felsot, , and H. L. Swinney, 2007: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett., 98, 144502, doi:10.1103/PhysRevLett.98.144502.

    • Search Google Scholar
    • Export Citation
  • McCormick, M. P., , L. W. Thomason, , and C. R. Trepte, 1995: Atmospheric effects of the Mt Pinatubo eruption. Nature, 373, 399404.

  • McIntyre, M. E., 1989: On the Antarctic ozone hole. J. Atmos. Terr. Phys., 51, 2943.

  • McIntyre, M. E., 2008: Potential-vorticity inversion and the wave–turbulence jigsaw: Some recent clarifications. Advances in Geophysics, Vol. 15, Academic Press, 47–56.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600.

  • Minschwaner, K., and Coauthors, 1996: Bulk properties of isentropic mixing into the tropics in the lower stratosphere. J. Geophys. Res., 101, 94339439.

    • Search Google Scholar
    • Export Citation
  • Morrison, P. J., 2000: Magnetic field lines, Hamiltonian dynamics, and nontwist systems. Phys. Plasmas, 7, 2279, doi:10.1063/1.874062.

  • Mote, P. W., , T. J. Dunkerton, , M. E. McIntyre, , E. A. Ray, , P. H. Haynes, , and J. M. Russell, 1998: Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res., 103, 86518666.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., , and T. G. Shepherd, 1997: Chaotic mixing and transport in Rossby-wave critical layers. J. Fluid Mech., 334, 315351.

  • Ottino, J., 1989: The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press, 364 pp.

  • Peacock, T., , and J. Dabiri, 2010: Introduction to focus issue: Lagrangian coherent structures. Chaos, 20, 017501, doi:10.1063/1.3278173.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., , and G. R. Stuhne, 2002: The upscale turbulent cascade shear layers, cyclones and gas giant bands. Meteorology at the Millennium, R. P. Pearce, Ed., Academic Press, 43–61.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1996: A “tropical pipe” model of stratospheric transport. J. Geophys. Res., 101, 39573972.

  • Polvani, L. M., , D. W. Waugh, , and R. A. Plumb, 1995: On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci., 52, 12881309.

    • Search Google Scholar
    • Export Citation
  • Porco, C. C., and Coauthors, 2003: Cassini imaging of Jupiter ’s atmosphere, satellites, and rings. Science, 299, 15411547.

  • Read, P. L., , P. J. Gierasch, , B. J. Conrath, , A. Simon-Miller, , T. Fouchet, , and Y. H. Yamazaki, 2006: Mapping potential-vorticity dynamics on Jupiter. I: Zonal-mean circulation from Cassini and Voyager 1 data. Quart. J. Roy. Meteor. Soc., 132, 15771603.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., , A. F. Tuck, , K. K. Kelly, , J. M. Russell, III, , and M. P. McCormick, 1997: Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere. J. Geophys. Res., 102, 13 21313 234.

    • Search Google Scholar
    • Export Citation
  • Rüssmann, H., 1989: Non-degeneracy in the perturbation theory of integrable dynamical systems. Number Theory and Dynamical Systems, M. M. Dodson and J. A. G. Vickers, Eds., Cambridge University Press, 5–18.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , M. G. Brown, , F. J. Beron-Vera, , H. Koçak, , M. J. Olascoaga, , and I. A. Udovydchenkov, 2007a: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64, 35953610.

    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., , M. G. Brown, , F. J. Beron-Vera, , H. Koçak, , M. J. Olascoaga, , and I. A. Udovydchenkov, 2007b: Robust transport barriers resulting from strong Kolmogorov–Arnold–Moser stability. Phys. Rev. Lett., 98, 104102, doi:10.1103/PhysRevLett.98.104102.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and S. Wiggins, Eds., 2006: Lagrangian Transport in Geophysical Jets and Waves. Springer, 147 pp.

  • Sankey, D., , and T. G. Shepherd, 2003: Correlations of long-lived chemical species in a middle atmosphere general circulation model. J. Geophys. Res., 108, 4494, doi:10.1029/2002JD002799.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., , and L. M. Polvani, 2008: Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett., 35, L24202, doi:10.1029/2008GL036060.

    • Search Google Scholar
    • Export Citation
  • Sevryuk, M. B., 1995: KAM-stable Hamiltonians. J. Dyn. Control Syst., 1, 351366.

  • Sevryuk, M. B., 2007: Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman ’s method. Discrete Contin. Dyn. Syst., 18A, 569595.

    • Search Google Scholar
    • Export Citation
  • Shadden, S. C., , F. Lekien, , and J. E. Marsden, 2005: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D, 212, 271304.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1988: Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows. J. Fluid Mech., 196, 291322.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191.

  • Shuckburgh, E., , and P. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15, 33423357.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., , F. d ’Ovidio, , and B. Legras, 2009: Local mixing events in the upper troposphere and lower stratosphere. Part II: Seasonal and interannual variability. J. Atmos. Sci., 66, 36953706.

    • Search Google Scholar
    • Export Citation
  • Sideris, T. C., , and L. Vega, 2009: Stability in l1 of circular vortex patches. Proc. Amer. Math. Soc., 137, 41994202.

  • Simó, C., 1998: Invariant curves of analytic perturbed nontwist area preserving maps. Regul. Chaotic Dyn., 3, 180195.

  • Simon-Miller, A. A., , D. Banfield, , and P. J. Gierasch, 2001: Color and the vertical structure in Jupiter ’s belts, zones, and weather systems. Icarus, 154, 459474.

    • Search Google Scholar
    • Export Citation
  • Stewartson, K., 1978: The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn., 9, 185200.

  • Tang, Y., 1987: Nonlinear stability of vortex patches. Trans. Amer. Math. Soc., 304, 617638.

  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278.

  • Thyagaraja, A., , P. J. Knighta, , and N. Loureirob, 2004: Mesoscale plasma dynamics, transport barriers and zonal flows: Simulations and paradigms. Eur. J. Mech., 23B, 475490.

    • Search Google Scholar
    • Export Citation
  • Trepte, C. R., , and M. H. Hitchman, 1992: Tropical stratospheric circulation deduced from satellite aerosol data. Nature, 355, 626628.

    • Search Google Scholar
    • Export Citation
  • Trepte, C. R., , R. E. Veiga, , and M. P. McCormick, 1993: The poleward dispersal of Mount Pinatubo volcanic aerosol. J. Geophys. Res., 98, 18 56318 573.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., , and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68, 19351996.

    • Search Google Scholar
    • Export Citation
  • Warn, T., , and H. Warn, 1978: The evolution of a nonlinear critical level. Stud. Appl. Math., 59, 3771.

  • Waugh, D. W., , and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 56995713.

    • Search Google Scholar
    • Export Citation
  • Zuchowski, L. C., , Y. H. Yamazaki, , and P. L. Read, 2009a: Modeling Jupiter ’s cloud bands and decks: 1. Jet scale meridional circulations. Icarus, 200, 548562.

    • Search Google Scholar
    • Export Citation
  • Zuchowski, L. C., , Y. H. Yamazaki, , and P. L. Read, 2009b: Modeling Jupiter ’s cloud bands and decks: 2. Distribution and motion of condensates. Icarus, 200, 563573.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 12
PDF Downloads 32 32 4

Zonal Jets as Meridional Transport Barriers in the Subtropical and Polar Lower Stratosphere

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Departments of Computer Science and Mathematics, University of Miami, Miami, Florida
© Get Permissions
Restricted access

Abstract

Applications of recent results from dynamical systems theory to the study of transport and mixing in incompressible two-dimensional flows lead to the expectation that, independent of the background potential vorticity (PV) distribution, weakly perturbed zonal jets are associated with barriers that inhibit meridional transport. Here the authors provide evidence in support of this expectation based on the analysis of isentropic winds in the lower stratosphere as produced by the Canadian Middle Atmosphere Model (CMAM), a comprehensive general circulation model. Specifically, barriers to meridional transport are found to be associated with the (eastward) austral polar night jet, for which the meridional gradient of background PV is large, and also for the (westward) boreal summer subtropical jet, for which the background PV gradient is quite small. The identification of the meridional transport barriers is based on the computation of finite-time Lyapunov exponents (FTLEs), which characterize the amount of stretching about fluid particle trajectories. Being composed of regular fluid particle trajectories lying on invariant tori, the meridional transport barriers are identified with topologically circular, local minimizing curves or trenches of the backward-plus-forward FTLE field. Results from explicit passive tracer advection experiments and flux computations are also presented, which are consistent with results inferred using the FTLE diagnostic.

Corresponding author address: F. J. Beron-Vera, RSMAS/AMP, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: fberon@rsmas.miami.edu

Abstract

Applications of recent results from dynamical systems theory to the study of transport and mixing in incompressible two-dimensional flows lead to the expectation that, independent of the background potential vorticity (PV) distribution, weakly perturbed zonal jets are associated with barriers that inhibit meridional transport. Here the authors provide evidence in support of this expectation based on the analysis of isentropic winds in the lower stratosphere as produced by the Canadian Middle Atmosphere Model (CMAM), a comprehensive general circulation model. Specifically, barriers to meridional transport are found to be associated with the (eastward) austral polar night jet, for which the meridional gradient of background PV is large, and also for the (westward) boreal summer subtropical jet, for which the background PV gradient is quite small. The identification of the meridional transport barriers is based on the computation of finite-time Lyapunov exponents (FTLEs), which characterize the amount of stretching about fluid particle trajectories. Being composed of regular fluid particle trajectories lying on invariant tori, the meridional transport barriers are identified with topologically circular, local minimizing curves or trenches of the backward-plus-forward FTLE field. Results from explicit passive tracer advection experiments and flux computations are also presented, which are consistent with results inferred using the FTLE diagnostic.

Corresponding author address: F. J. Beron-Vera, RSMAS/AMP, University of Miami, 4600 Rickenbacker Cswy., Miami, FL 33149. E-mail: fberon@rsmas.miami.edu
Save