Formation and Quasi-Periodic Behavior of Outer Spiral Rainbands in a Numerically Simulated Tropical Cyclone

Qingqing Li International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, and Shanghai Typhoon Institute and Laboratory of Typhoon Forecast Technique/China Meteorological Administration, Shanghai, China

Search for other papers by Qingqing Li in
Current site
Google Scholar
PubMed
Close
and
Yuqing Wang International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The formation and quasi-periodic behavior of outer spiral rainbands in a tropical cyclone simulated in the cloud-resolving tropical cyclone model version 4 (TCM4) are analyzed. The outer spiral rainbands in the simulation are preferably initiated near the 60-km radius, or roughly about 3 times the radius of maximum wind (RMW). After initiation, they generally propagate radially outward with a mean speed of about 5 m s−1. They are reinitiated quasi-periodically with a period between 22 and 26 h in the simulation. The inner spiral rainbands, which form within a radius of about 3 times the RMW, are characterized by the convectively coupled vortex Rossby waves (VRWs), but the formation of outer spiral rainbands (i.e., rainbands formed outside a radius of about 3 times the RMW) is much more complicated. It is shown that outer spiral rainbands are triggered by the inner-rainband remnants immediately outside the rapid filamentation zone and inertial instability in the upper troposphere. The preferred radial location of initiation of outer spiral rainbands is understood as a balance between the suppression of deep convection by rapid filamentation and the favorable dynamical and thermodynamic conditions for initiation of deep convection.

The quasi-periodic occurrence of outer spiral rainbands is found to be associated with the boundary layer recovery from the effect of convective downdrafts and the consumption of convective available potential energy (CAPE) by convection in the previous outer spiral rainbands. Specifically, once convection is initiated and organized in the form of outer spiral rainbands, it will produce strong downdrafts and consume CAPE. These effects weaken convection near its initiation location. As the rainband propagates outward farther, the boundary layer air near the original location of convection initiation takes about 10 h to recover by extracting energy from the underlying ocean. Convection and thus new outer spiral rainbands will be initiated near a radius of about 3 times the RMW. This will be followed by a similar outward propagation and the subsequent boundary layer recovery, leading to a quasi-periodic occurrence of outer spiral rainbands. In response to the quasi-periodic appearance of outer spiral rainbands, the storm intensity experiences a similar quasi-periodic oscillation with its intensity or intensification rate starting to decrease after about 4 h of the initiation of an outer spiral rainband. The results provide an alternative explanation or one of the mechanisms that are responsible for the quasi-periodic (quasi-diurnal) variation in the intensity and in the area of outflow-layer cloud canopy of observed tropical cyclones.

School of Ocean and Earth Science and Technology Publication Number 8102 and International Pacific Research Center Publication Number 845.

Corresponding author address: Dr. Yuqing Wang, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu

Abstract

The formation and quasi-periodic behavior of outer spiral rainbands in a tropical cyclone simulated in the cloud-resolving tropical cyclone model version 4 (TCM4) are analyzed. The outer spiral rainbands in the simulation are preferably initiated near the 60-km radius, or roughly about 3 times the radius of maximum wind (RMW). After initiation, they generally propagate radially outward with a mean speed of about 5 m s−1. They are reinitiated quasi-periodically with a period between 22 and 26 h in the simulation. The inner spiral rainbands, which form within a radius of about 3 times the RMW, are characterized by the convectively coupled vortex Rossby waves (VRWs), but the formation of outer spiral rainbands (i.e., rainbands formed outside a radius of about 3 times the RMW) is much more complicated. It is shown that outer spiral rainbands are triggered by the inner-rainband remnants immediately outside the rapid filamentation zone and inertial instability in the upper troposphere. The preferred radial location of initiation of outer spiral rainbands is understood as a balance between the suppression of deep convection by rapid filamentation and the favorable dynamical and thermodynamic conditions for initiation of deep convection.

The quasi-periodic occurrence of outer spiral rainbands is found to be associated with the boundary layer recovery from the effect of convective downdrafts and the consumption of convective available potential energy (CAPE) by convection in the previous outer spiral rainbands. Specifically, once convection is initiated and organized in the form of outer spiral rainbands, it will produce strong downdrafts and consume CAPE. These effects weaken convection near its initiation location. As the rainband propagates outward farther, the boundary layer air near the original location of convection initiation takes about 10 h to recover by extracting energy from the underlying ocean. Convection and thus new outer spiral rainbands will be initiated near a radius of about 3 times the RMW. This will be followed by a similar outward propagation and the subsequent boundary layer recovery, leading to a quasi-periodic occurrence of outer spiral rainbands. In response to the quasi-periodic appearance of outer spiral rainbands, the storm intensity experiences a similar quasi-periodic oscillation with its intensity or intensification rate starting to decrease after about 4 h of the initiation of an outer spiral rainband. The results provide an alternative explanation or one of the mechanisms that are responsible for the quasi-periodic (quasi-diurnal) variation in the intensity and in the area of outflow-layer cloud canopy of observed tropical cyclones.

School of Ocean and Earth Science and Technology Publication Number 8102 and International Pacific Research Center Publication Number 845.

Corresponding author address: Dr. Yuqing Wang, International Pacific Research Center, SOEST, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI 96822. E-mail: yuqing@hawaii.edu
Save
  • Alaka, M. A., 1961: The occurrence of anomalous winds and their significance. Mon. Wea. Rev., 89, 482494.

  • Alaka, M. A., 1962: On the occurrence of dynamic instability in incipient and developing hurricanes. National Hurricane Research Project Rep. 50, U.S. Weather Bureau, 51–56.

    • Search Google Scholar
    • Export Citation
  • Alaka, M. A., 1963: Instability aspects of hurricane genesis. National Hurricane Research Project Rep. 64, U.S. Weather Bureau, 23 pp.

  • Anthes, R. A., 1972: Development of asymmetries in a three-dimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100, 461476.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Barnes, G., E. Zipser, D. Jorgensen, and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137.

    • Search Google Scholar
    • Export Citation
  • Barnes, G., J. Gamache, M. LeMone, and G. Stossmeister, 1991: A convective cell in a hurricane rainband. Mon. Wea. Rev., 119, 776794.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and R. A. Anthes, 1971: On the asymmetric structure of the tropical cyclone outflow layer. J. Atmos. Sci., 28, 13481366.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial instability. Mon. Wea. Rev., 126, 118140.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192207.

    • Search Google Scholar
    • Export Citation
  • Browner, S. P., W. L. Woodley, and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., and R. C. Balling Jr., 2005: Variations in the diurnal character of tropical cyclone wind speeds. Geophys. Res. Lett., 32, L06706, doi:10.1029/2004GL021177.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145.

    • Search Google Scholar
    • Export Citation
  • Chow, K. C., K. L. Chan, and A. K. H. Lau, 2002: Generation of moving spiral bands in tropical cyclones. J. Atmos. Sci., 59, 29302950.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.

    • Search Google Scholar
    • Export Citation
  • Diercks, J. W., and R. A. Anthes, 1976: Diagnostic studies of spiral rainbands in a nonlinear hurricane model. J. Atmos. Sci., 33, 959975.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209227.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188.

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403.

  • Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 29012922.

  • Knox, J. A., 2003: Inertial instability. Encyclopedia of the Atmospheric Sciences, J. Holton, J. Pyle, and J. Curry, Eds., Academic Press, 1004–1013.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270.

  • Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940958.

  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893919.

    • Search Google Scholar
    • Export Citation
  • Lajoie, F., and I. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and C. S. Liou, 1996: Implementation of an Eε parameterization of vertical subgrid-scale mixing in a regional model. Mon. Wea. Rev., 124, 905918.

    • Search Google Scholar
    • Export Citation
  • May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev., 124, 807815.

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7789.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990a: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990b: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks, and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.

    • Search Google Scholar
    • Export Citation
  • Sawada, M., and T. Iwasaki, 2010: Impacts of evaporation from raindrops on tropical cyclones. Part II: Features of rainbands and asymmetric structure. J. Atmos. Sci., 67, 8496.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2004: Damping and pumping of a vortex Rossby wave in a monotonic cyclone: Critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids, 16, 13341348.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2006: Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci., 63, 435456.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438.

    • Search Google Scholar
    • Export Citation
  • Sturtevant, J. S., 1995: The Severe Local Storm Forecasting Primer. Weather Scratch Meteorological Services, 197 pp.

  • Wang, Y., 1996: On the forward-in-time upstream advection scheme for non-uniform and time-dependent flow. Meteor. Atmos. Phys., 61, 2738.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002c: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equations model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 30223036.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008a: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181.

  • Wang, Y., 2008b: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 15051527.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Wang, Y., and G. J. Holland, 1996a: The beta drift of baroclinic vortices. Part I: Adiabatic vortices. J. Atmos. Sci., 53, 411427.

  • Wang, Y., and G. J. Holland, 1996b: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332.

  • Wang, Y., and G. J. Holland, 1996c: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 37373756.

  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., 1977: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci., 34, 10281039.

  • Willoughby, H., 1978: A possible mechanism for the formation of hurricane rainbands. J. Atmos. Sci., 35, 838848.

  • Willoughby, H., H. L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984a: Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci., 41, 11691186.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H., F. D. Marks, and R. J. Feiberg, 1984b: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 31893211.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157.

    • Search Google Scholar
    • Export Citation
  • Yu, C.-K., and C.-L. Tsai, 2010: Surface pressure features of landfalling typhoon rainbands and their possible causes. J. Atmos. Sci., 67, 28932911.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 676 342 126
PDF Downloads 448 200 23