Equatorial Planetary Waves and Their Signature in Atmospheric Variability

Kevin M. Grise Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Kevin M. Grise in
Current site
Google Scholar
PubMed
Close
and
David W. J. Thompson Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David W. J. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Equatorial planetary waves are a fundamental component of the tropical climate system. Previous studies have examined their structure in the climatological-mean circulation, their role in the climatological-mean momentum balance of the tropics, and their contribution to the climatological-mean upwelling across the tropical tropopause. In this study, the authors focus on the contribution of the equatorial planetary waves to variability in the tropical circulation about its climatological-mean state.

The equatorial planetary waves that dominate the climatological mean exhibit considerable variability on intraseasonal and interannual time scales. Variability in the amplitude of the equatorial planetary waves is associated with a distinct pattern of equatorially symmetric climate variability that also emerges from empirical orthogonal function analysis of various tropical dynamical fields. Variability in the equatorial planetary waves is characterized by variations in 1) convection in the deep tropics, 2) eddy momentum flux convergence and zonal-mean zonal wind in the tropical upper troposphere, 3) the mean meridional circulation of the tropical and subtropical troposphere, 4) temperatures in the tropical lower stratosphere and subtropical troposphere of both hemispheres, and 5) the amplitude of the upper tropospheric anticyclones over the western tropical Pacific Ocean.

It is argued that pulsation of the equatorial planetary waves provides an alternative framework for interpreting the response of the tropical circulation to a range of climate phenomena. Pulsation of the equatorial planetary waves is apparent in association with opposing phases of El Niño–Southern Oscillation and select phases of the Madden–Julian oscillation. Pulsation of the equatorial planetary waves also contributes to variability in measures of the width of the tropical belt.

Corresponding author address: Kevin M. Grise, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: kevin.grise@mcgill.ca

Abstract

Equatorial planetary waves are a fundamental component of the tropical climate system. Previous studies have examined their structure in the climatological-mean circulation, their role in the climatological-mean momentum balance of the tropics, and their contribution to the climatological-mean upwelling across the tropical tropopause. In this study, the authors focus on the contribution of the equatorial planetary waves to variability in the tropical circulation about its climatological-mean state.

The equatorial planetary waves that dominate the climatological mean exhibit considerable variability on intraseasonal and interannual time scales. Variability in the amplitude of the equatorial planetary waves is associated with a distinct pattern of equatorially symmetric climate variability that also emerges from empirical orthogonal function analysis of various tropical dynamical fields. Variability in the equatorial planetary waves is characterized by variations in 1) convection in the deep tropics, 2) eddy momentum flux convergence and zonal-mean zonal wind in the tropical upper troposphere, 3) the mean meridional circulation of the tropical and subtropical troposphere, 4) temperatures in the tropical lower stratosphere and subtropical troposphere of both hemispheres, and 5) the amplitude of the upper tropospheric anticyclones over the western tropical Pacific Ocean.

It is argued that pulsation of the equatorial planetary waves provides an alternative framework for interpreting the response of the tropical circulation to a range of climate phenomena. Pulsation of the equatorial planetary waves is apparent in association with opposing phases of El Niño–Southern Oscillation and select phases of the Madden–Julian oscillation. Pulsation of the equatorial planetary waves also contributes to variability in measures of the width of the tropical belt.

Corresponding author address: Kevin M. Grise, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada. E-mail: kevin.grise@mcgill.ca
Save
  • Boehm, M. T., and S. Lee, 2003: The implications of tropical Rossby waves for tropical tropopause cirrus formation and for the equatorial upwelling of the Brewer–Dobson circulation. J. Atmos. Sci., 60, 247261.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2007: Structure of the annual-mean equatorial planetary waves in the ERA-40 reanalyses. J. Atmos. Sci., 64, 28622880.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., J. M. Wallace, and I. Kraucunas, 2005: Tropical zonal momentum balance in the NCEP reanalyses. J. Atmos. Sci., 62, 24992513.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1995: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions. J. Geophys. Res., 100, 16 67516 688.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for troposphere. J. Atmos. Sci., 37, 26002616.

  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hendon, H. H., and B. Liebmann, 1990a: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990b: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 22272240.

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604.

  • Hoerling, M. P., A. Kumar, and T. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme phases. J. Climate, 14, 12771293.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236.

  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., and D. L. Hartmann, 2005: Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J. Atmos. Sci., 62, 371389.

    • Search Google Scholar
    • Export Citation
  • Lambert, A., and Coauthors, 2007: Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, doi:10.1029/2007JD008724.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1987: Relationships between changes in the length of day and the 40- to 50-day oscillation in the tropics. J. Geophys. Res., 92, 83918399.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., T. J. Dunkerton, and H. C. Pumphrey, 1998: Sub-seasonal variations in lower stratospheric water vapor. Geophys. Res. Lett., 25, 24452448.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., H. L. Clark, T. J. Dunkerton, R. S. Harwood, and H. C. Pumphrey, 2000: Intraseasonal variations of water vapor in the tropical upper troposphere and tropopause region. J. Geophys. Res., 105, 17 45717 470.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part II: Model results. J. Atmos. Sci., 63, 14201431.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595.

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., and Coauthors, 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and G. C. Reid, 2008: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res., 113, D06107, doi:10.1029/2007JD009109.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., and S. Lee, 2010: Effect of tropical waves on the tropical tropopause transition layer upwelling. J. Atmos. Sci., 67, 31303148.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414432.

  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., and J. M. Wallace, 2010: To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer–Dobson circulation? J. Atmos. Sci., 67, 12321246.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54, 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperatures and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 456 145 16
PDF Downloads 392 103 13