Pathways for Communicating the Effects of Stratospheric Ozone to the Polar Vortex: Role of Zonally Asymmetric Ozone

John R. Albers Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by John R. Albers in
Current site
Google Scholar
PubMed
Close
and
Terrence R. Nathan Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Terrence R. Nathan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mechanistic model that couples quasigeostrophic dynamics, radiative transfer, ozone transport, and ozone photochemistry is used to study the effects of zonal asymmetries in ozone (ZAO) on the model’s polar vortex. The ZAO affect the vortex via two pathways. The first pathway (P1) hinges on modulation of the propagation and damping of a planetary wave by ZAO; the second pathway (P2) hinges on modulation of the wave–ozone flux convergences by ZAO. In the steady state, both P1 and P2 play important roles in modulating the zonal-mean circulation. The relative importance of wave propagation versus wave damping in P1 is diagnosed using an ozone-modified refractive index and an ozone-modified vertical energy flux. In the lower stratosphere, ZAO cause wave propagation and wave damping to oppose each other. The result is a small change in planetary wave drag but a large reduction in wave amplitude. Thus in the lower stratosphere, ZAO “precondition” the wave before it propagates into the upper stratosphere, where damping due to photochemically accelerated cooling dominates, causing a large reduction in planetary wave drag and thus a colder polar vortex. The ability of ZAO within the lower stratosphere to affect the upper stratosphere and lower mesosphere is discussed in light of secular and episodic changes in stratospheric ozone.

Corresponding author address: John R. Albers, Dept. of Land, Air, and Water Resources, Hoagland Hall, University of California, Davis, Davis, CA 95616-8627. E-mail: albersjohn@hotmail.com

Abstract

A mechanistic model that couples quasigeostrophic dynamics, radiative transfer, ozone transport, and ozone photochemistry is used to study the effects of zonal asymmetries in ozone (ZAO) on the model’s polar vortex. The ZAO affect the vortex via two pathways. The first pathway (P1) hinges on modulation of the propagation and damping of a planetary wave by ZAO; the second pathway (P2) hinges on modulation of the wave–ozone flux convergences by ZAO. In the steady state, both P1 and P2 play important roles in modulating the zonal-mean circulation. The relative importance of wave propagation versus wave damping in P1 is diagnosed using an ozone-modified refractive index and an ozone-modified vertical energy flux. In the lower stratosphere, ZAO cause wave propagation and wave damping to oppose each other. The result is a small change in planetary wave drag but a large reduction in wave amplitude. Thus in the lower stratosphere, ZAO “precondition” the wave before it propagates into the upper stratosphere, where damping due to photochemically accelerated cooling dominates, causing a large reduction in planetary wave drag and thus a colder polar vortex. The ability of ZAO within the lower stratosphere to affect the upper stratosphere and lower mesosphere is discussed in light of secular and episodic changes in stratospheric ozone.

Corresponding author address: John R. Albers, Dept. of Land, Air, and Water Resources, Hoagland Hall, University of California, Davis, Davis, CA 95616-8627. E-mail: albersjohn@hotmail.com
Save
  • Allen, M., and J. E. Frederick, 1982: Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands. J. Atmos. Sci., 39, 20662075.

    • Search Google Scholar
    • Export Citation
  • Bender, C. M., and S. A. Orszag, 1978: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. International Series in Pure and Applied Mathematics, Vol. X, McGraw-Hill, 593 pp.

    • Search Google Scholar
    • Export Citation
  • Blake, D., and R. Lindzen, 1973: Effect of simplified photochemical models on calculated equilibria and cooling rates in the stratosphere. Mon. Wea. Rev., 101, 783802.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and P. Drazin, 1961: Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545.

    • Search Google Scholar
    • Export Citation
  • Cogley, A., and W. Borucki, 1976: Exponential approximation for daily average solar heating or photolysis. J. Atmos. Sci., 33, 13471356.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and T. R. Nathan, 2000: The influence of wave- and zonal-mean ozone feedbacks on the quasi-biennial oscillation. J. Atmos. Sci., 57, 34263442.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., and T. R. Nathan, 2005: A new pathway for communicating the 11-year solar cycle signal to the QBO. Geophys. Res. Lett., 32, L18805, doi:10.1029/2005GL023696.

    • Search Google Scholar
    • Export Citation
  • Cordero, E. C., T. R. Nathan, and R. S. Echols, 1998: An analytical study of ozone feedbacks on Kelvin and Rossby–gravity waves: Effects on the QBO. J. Atmos. Sci., 55, 10511062.

    • Search Google Scholar
    • Export Citation
  • Craig, C. A., and G. Ohring, 1958: The temperature dependence of ozone radiational heating rates in the vicinity of the mesopeak. J. Atmos. Sci., 15, 5962.

    • Search Google Scholar
    • Export Citation
  • Crook, J. A., N. P. Gillett, and S. P. E. Keeley, 2008: Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys. Res. Lett., 35, L07806, doi:10.1029/2007GL032698.

    • Search Google Scholar
    • Export Citation
  • Cunnold, D., F. Alyea, N. Phillips, and R. Prinn, 1975: A three-dimensional dynamical chemical model of atmospheric ozone. J. Atmos. Sci., 32, 170194.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., 1973: Method of parameterization for infrared cooling between altitudes of 30 and 70 kilometers. J. Geophys. Res., 78, 44514457.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1985: Radiative-dynamical interactions in the middle atmosphere. Advances in Geophysics, Vol. 28, Academic Press, 277–300.

    • Search Google Scholar
    • Export Citation
  • Gabriel, A., D. Peters, I. Kirchner, and H.-F. Graf, 2007: Effect of zonally asymmetric ozone on stratospheric temperature and planetary wave propagation. Geophys. Res. Lett., 34, L06807, doi:10.1029/2006GL028998.

    • Search Google Scholar
    • Export Citation
  • Garcia, R., and D. Hartmann, 1980: The role of planetary waves in the maintenance of the zonally averaged ozone distribution of the upper stratosphere. J. Atmos. Sci., 37, 22482264.

    • Search Google Scholar
    • Export Citation
  • Garcia, R., and S. Solomon, 1983: A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere. J. Geophys. Res., 88, 13791400.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., J. F. Scinocca, D. A. Plummer, and M. C. Reader, 2009: Sensitivity of climate to dynamically-consistent zonal asymmetries in ozone. Geophys. Res. Lett., 36, L10809, doi:10.1029/2009GL037246.

    • Search Google Scholar
    • Export Citation
  • Haigh, J., and J. Pyle, 1982: Ozone perturbation experiments in a two-dimensional circulation model. Quart. J. Roy. Meteor. Soc., 108, 551574.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., 2009: Observed stratospheric downward reflection and its relation to upward pulses of wave activity. J. Geophys. Res., 114, D08120, doi:10.1029/2008JD010493.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1978: A note concerning the effect of varying extinction on radiative-photochemical relaxation. J. Atmos. Sci., 35, 11251130.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and R. R. Garcia, 1979: A mechanistic model of ozone transport by planetary waves in the stratosphere. J. Atmos. Sci., 36, 350364.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 22182225.

  • Hu, Y., and K. K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16, 30273038.

    • Search Google Scholar
    • Export Citation
  • Jin, J. J., and Coauthors, 2006: Severe Arctic ozone loss in the winter 2004/2005: Observations from ACE-FTS. Geophys. Res. Lett., 33, L15801, doi:10.1029/2006GL026752.

    • Search Google Scholar
    • Export Citation
  • Keating, G. M., L. S. Chiou, and N. C. Hsu, 1996: Improved ozone reference models for the COSPAR International Reference Atmosphere. Adv. Space Res., 18, 1158.

    • Search Google Scholar
    • Export Citation
  • Kirchner, I., and D. Peters, 2003: Modeling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe. Ann. Geophys., 21, 21072118.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climate, 19, 57215727.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and R. Goody, 1965: Radiative and photochemical processes in mesospheric dynamics: Part I, models for radiative and photochemical processes. J. Atmos. Sci., 22, 341348.

    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., T. R. Nathan, and E. C. Cordero, 2011: The effect of zonally asymmetric ozone heating on the Northern Hemisphere winter polar stratosphere. Geophys. Res. Lett., 38, L03802, doi:10.1029/2010GL045937.

    • Search Google Scholar
    • Export Citation
  • Meier, R., D. Anderson, and M. Nicolet, 1982: Radiation field in the troposphere and stratosphere from 240–1000 nm—I. General analysis. Planet. Space Sci., 30, 923933.

    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and M. J. Molina, 1986: Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res., 91, 14 50114 508.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., 1989: On the role of ozone in the stability of Rossby normal modes. J. Atmos. Sci., 46, 20942100.

  • Nathan, T. R., and L. Li, 1991: Linear stability of free planetary waves in the presence of radiative–photochemical feedbacks. J. Atmos. Sci., 48, 18371855.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., and E. C. Cordero, 2007: An ozone modified refractive index for vertically propagating planetary waves. J. Geophys. Res., 112, D02105, doi:10.1029/2006JD007357.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., E. C. Cordero, and L. Li, 1994: Ozone heating and the destabilization of traveling waves during summer. Geophys. Res. Lett., 21, 15311534.

    • Search Google Scholar
    • Export Citation
  • Nathan, T. R., J. R. Albers, and E. C. Cordero, 2011: Role of wave–mean flow interaction in sun–climate connections: Historical overview and some new interpretations and results. J. Atmos. Sol.-Terr. Phys., 73, 15941605, doi:10.1016/j.jastp.2010.12.013.

    • Search Google Scholar
    • Export Citation
  • Nicolet, M., R. Meier, and D. Anderson, 1982: Radiation field in the troposphere and stratosphere from 240–1000 nm—II. Numerical analysis. Planet. Space Sci., 30, 935983.

    • Search Google Scholar
    • Export Citation
  • Randel, W., M.-L. Chanin, and C. Michaut, Eds., 2002: SPARC intercomparison of middle atmosphere climatologies. SPARC Rep. 3, 96 pp. [Available online at http://www.sparc.sunysb.edu/html/temp_wind.html.]

    • Search Google Scholar
    • Export Citation
  • Sander, S. P., and Coauthors, 2006: Chemical kinetics and photochemical data for use in atmospheric studies: Evaluation Number 15. JPL Publication 06-2, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 523 pp.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., B. A. Boville, D. Kinnison, and R. R. Garcia, 2005: The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., L. Oman, P. A. Newman, R. S. Stolarski, S. Pawson, J. E. Nielsen, and J. Perlwitz, 2009: Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys. Res. Lett., 36, L18701, doi:10.1029/2009GL040419.

    • Search Google Scholar
    • Export Citation
  • WMO, 1985: Atmospheric ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change. NASA Tech. Doc. 19870001179, Vol. 1, 1095 pp.

    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Scientific assessment of ozone depletion: 2006. Global Ozone Research and Monitoring Project Rep. 50, 572 pp.

  • Xu, J., 1999: The influence of photochemistry on gravity waves in the middle atmosphere. Earth Planets Space, 51, 855875.

  • Xu, J., A. K. Smith, and G. P. Brasseur, 2001: Conditions for the photochemical destabilization of gravity waves in the mesopause region. J. Atmos. Sol.-Terr. Phys., 63, 18211829.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. R. Holton, 1986: Photochemical damping of inertio–gravity waves. J. Atmos. Sci., 43, 25782584.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 330 143 11
PDF Downloads 178 58 9