Using the Stochastic Multicloud Model to Improve Tropical Convective Parameterization: A Paradigm Example

Yevgeniy Frenkel Department of Mathematics, and Center for Atmosphere–Ocean Science, Courant Institute, New York University, New York, New York

Search for other papers by Yevgeniy Frenkel in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Majda Department of Mathematics, and Center for Atmosphere–Ocean Science, Courant Institute, New York University, New York, New York

Search for other papers by Andrew J. Majda in
Current site
Google Scholar
PubMed
Close
, and
Boualem Khouider Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Boualem Khouider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Despite recent advances in supercomputing, current general circulation models (GCMs) poorly represent the variability associated with organized tropical convection. A stochastic multicloud convective parameterization based on three cloud types (congestus, deep, and stratiform), introduced recently by Khouider, Biello, and Majda in the context of a single column model, is used here to study flows above the equator without rotation effects. The stochastic model dramatically improves the variability of tropical convection compared to the conventional moderate- and coarse-resolution paradigm GCM parameterizations. This increase in variability comes from intermittent coherent structures such as synoptic and mesoscale convective systems, analogs of squall lines and convectively coupled waves seen in nature whose representation is improved by the stochastic parameterization. Furthermore, simulations with a sea surface temperature (SST) gradient yield realistic mean Walker cell circulation with plausible high variability. An additional feature of the present stochastic parameterization is a natural scaling of the model from moderate to coarse grids that preserves the variability and statistical structure of the coherent features. These results systematically illustrate, in a paradigm model, the benefits of using the stochastic multicloud framework to improve deterministic parameterizations with clear deficiencies.

Corresponding author address: Boualem Khouider, Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 3P4, Canada. E-mail: khouider@uvic.ca

Abstract

Despite recent advances in supercomputing, current general circulation models (GCMs) poorly represent the variability associated with organized tropical convection. A stochastic multicloud convective parameterization based on three cloud types (congestus, deep, and stratiform), introduced recently by Khouider, Biello, and Majda in the context of a single column model, is used here to study flows above the equator without rotation effects. The stochastic model dramatically improves the variability of tropical convection compared to the conventional moderate- and coarse-resolution paradigm GCM parameterizations. This increase in variability comes from intermittent coherent structures such as synoptic and mesoscale convective systems, analogs of squall lines and convectively coupled waves seen in nature whose representation is improved by the stochastic parameterization. Furthermore, simulations with a sea surface temperature (SST) gradient yield realistic mean Walker cell circulation with plausible high variability. An additional feature of the present stochastic parameterization is a natural scaling of the model from moderate to coarse grids that preserves the variability and statistical structure of the coherent features. These results systematically illustrate, in a paradigm model, the benefits of using the stochastic multicloud framework to improve deterministic parameterizations with clear deficiencies.

Corresponding author address: Boualem Khouider, Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 3P4, Canada. E-mail: khouider@uvic.ca
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908.

    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1975: An exact method for numerically simulating the stochastic coalescence process in a cloud. J. Atmos. Sci., 32, 19771989.

    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1977: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 23402361.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like systems and moisture-convection feedback in idealized aquaplanet simulations. Proc. Workshop on Simulation and Prediction of Intraseasonal Variability with Emphasis on the MJO, Reading, United Kingdom, CLIVAR/ECMWF, 67–72. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2003/MJO/ws_mjo_grabowski.pdf.]

  • Grabowski, W. W., 2004: An improved framework for superparameterization. J. Atmos. Sci., 61, 19401952.

  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J.-I. Yano, and M. W. Moncrieff, 2000: Cloud resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 20222040.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and B. Khouider, 2010: Convectively coupled waves in a sheared environment. J. Atmos. Sci., 67, 29132942.

  • Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99, 80738084.

    • Search Google Scholar
    • Export Citation
  • Horenko, I., 2011: Nonstationarity in multifactor models of discrete jump processes, memory, and application to cloud modeling. J. Atmos. Sci., 68, 14931506.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Katsoulakis, M. A., A. J. Majda, and D. G. Vlachos, 2003a: Coarse-grained stochastic processes for microscopic lattice systems. Proc. Natl. Acad. Sci. USA, 100, 782787.

    • Search Google Scholar
    • Export Citation
  • Katsoulakis, M. A., A. J. Majda, and D. G. Vlachos, 2003b: Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. J. Comput. Phys., 186, 250278.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2005a: A non oscillatory balanced scheme for an idealized tropical climate model; Part I: Algorithm and validation. Theor. Comput. Fluid Dyn., 19, 331354.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2005b: A non oscillatory balanced scheme for an idealized tropical climate model; Part II: Nonlinear coupling and moisture effects. Theor. Comput Fluid Dyn., 19, 355375.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2006a: Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351375.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2006b: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2008a: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397.

    • Search Google Scholar
    • Export Citation
  • Khouider B, and A. J. Majda, 2008b: Multicloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914.

    • Search Google Scholar
    • Export Citation
  • Khouider B, A. J. Majda, and M. A. Katsoulakis, 2003: Coarse-grained stochastic models for tropical convection and climate. Proc. Natl. Acad. Sci. USA, 100, 11 94111 946.

    • Search Google Scholar
    • Export Citation
  • Khouider B, J. Biello, and A. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216.

  • Khouider B, A. St-Cyr, A. J. Majda, and J. Tribbia, 2011: The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264.

    • Search Google Scholar
    • Export Citation
  • Khouider B, Y. Han, and J. Biello, 2012: Convective momentum transport in a simple multicloud model. J. Atmos. Sci., 69, 281302.

  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer-Verlag, 436 pp.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2000: Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett., 27, 36913694.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W.-B., and J. D. Neelin, 2003: Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Lett., 30, 1162, doi:10.1029/2002GL016203.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2007: Multiscale models with moisture and systematic strategies for superparameterization. J. Atmos. Sci., 64, 27262734.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and B. Khouider, 2002: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. USA, 99, 11231128.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2008: Stochastic models for convective momentum transport. Proc. Natl. Acad. Sci. USA, 105, 17 61417 619.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., C. Franzke, and B. Khouider, 2008: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. Roy. Soc., 366A, 24272453.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle 1. Mon. Wea. Rev., 93, 769798.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M., M. Shapiro, J. Slingo, and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56, 204211.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1974: Tropical super clusters within intraseasonal variation over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61, 19932015.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 2955–2970.

  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433448.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2009: Boundary layer dynamics in a simple model for convectively coupled gravity waves. J. Atmos. Sci., 66, 27802795.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Xing, Y., A. J. Majda, and W. W. Grabowski, 2009: New efficient sparse space–time algorithms for superparameterization on mesoscales. Mon. Wea. Rev., 137, 43074324.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, G. J., and N. A. McFarlane, 1995: Role of convective-scale momentum transport in climate simulation. J. Geophys. Res., 100, 14171426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 632 251 15
PDF Downloads 166 49 7