Self-Stratification of Tropical Cyclone Outflow. Part II: Implications for Storm Intensification

Kerry Emanuel Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Kerry Emanuel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones intensify and are maintained by surface enthalpy fluxes that result from the thermodynamics disequilibrium that exists between the tropical oceans and atmosphere. While this general result has been known for at least a half century, the detailed nature of feedbacks between thermodynamic and dynamic processes in tropical cyclones remains poorly understood. In particular, the spatial relationship between surface fluxes and the radial entropy distribution apparently does not act to amplify the entropy gradient and therefore the surface winds. In previous work, this problem was addressed by accounting for the radial distribution of convective fluxes of entropy out of the boundary layer; this led to the conclusion that a radial gradient of such convective fluxes is necessary for intensification.

Part I showed that the assumption of constant outflow temperature is incorrect and argued that the thermal stratification of the outflow is set by small-scale turbulence that limits the Richardson number. The assumption of Richardson number criticality of the outflow allows one to derive an equation for the variation of outflow temperature with angular momentum; this in turn leads to predictions of vortex structure and intensity that agree well with tropical cyclones simulated using a full-physics axisymmetric model. Here it is shown that the variation of outflow temperature with angular momentum also permits the vortex to intensify with time even in the absence of radial gradients of entrainment into the boundary layer. An equation is derived for the rate of intensity change and compared to simple models and to simulations using a full-physics model.

Corresponding author address: Kerry Emanuel, Rm. 54-1814, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: emanuel@mit.edu

Abstract

Tropical cyclones intensify and are maintained by surface enthalpy fluxes that result from the thermodynamics disequilibrium that exists between the tropical oceans and atmosphere. While this general result has been known for at least a half century, the detailed nature of feedbacks between thermodynamic and dynamic processes in tropical cyclones remains poorly understood. In particular, the spatial relationship between surface fluxes and the radial entropy distribution apparently does not act to amplify the entropy gradient and therefore the surface winds. In previous work, this problem was addressed by accounting for the radial distribution of convective fluxes of entropy out of the boundary layer; this led to the conclusion that a radial gradient of such convective fluxes is necessary for intensification.

Part I showed that the assumption of constant outflow temperature is incorrect and argued that the thermal stratification of the outflow is set by small-scale turbulence that limits the Richardson number. The assumption of Richardson number criticality of the outflow allows one to derive an equation for the variation of outflow temperature with angular momentum; this in turn leads to predictions of vortex structure and intensity that agree well with tropical cyclones simulated using a full-physics axisymmetric model. Here it is shown that the variation of outflow temperature with angular momentum also permits the vortex to intensify with time even in the absence of radial gradients of entrainment into the boundary layer. An equation is derived for the rate of intensity change and compared to simple models and to simulations using a full-physics model.

Corresponding author address: Kerry Emanuel, Rm. 54-1814, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: emanuel@mit.edu
Save
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240.

  • Bryan, G. H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 43, 585605.

  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Emanuel, K. A., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 54975509.

  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2011: The mean state of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 68, 13641376.

  • Mrowiec, A. A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619.

    • Search Google Scholar
    • Export Citation
  • Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917925.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 994 339 21
PDF Downloads 732 209 17