Ice in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds

P. R. Field * Met Office, Exeter, United Kingdom

Search for other papers by P. R. Field in
Current site
Google Scholar
PubMed
Close
,
A. J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. J. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
B. J. Shipway * Met Office, Exeter, United Kingdom

Search for other papers by B. J. Shipway in
Current site
Google Scholar
PubMed
Close
,
P. J. DeMott Colorado State University, Fort Collins, Colorado

Search for other papers by P. J. DeMott in
Current site
Google Scholar
PubMed
Close
,
K. A. Pratt University of California, San Diego, La Jolla, California

Search for other papers by K. A. Pratt in
Current site
Google Scholar
PubMed
Close
,
D. C. Rogers National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. C. Rogers in
Current site
Google Scholar
PubMed
Close
,
J. Stith National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by J. Stith in
Current site
Google Scholar
PubMed
Close
, and
K. A. Prather University of California, San Diego, La Jolla, California

Search for other papers by K. A. Prather in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heterogeneous ice nucleation is a source of uncertainty in models that represent ice clouds. The primary goal of the Ice in Clouds Experiment–Layer Clouds (ICE-L) field campaign was to determine if a link can be demonstrated between ice concentrations and the physical and chemical characteristics of the ambient aerosol. This study combines a 1D kinematic framework with lee wave cloud observations to infer ice nuclei (IN) concentrations that were compared to IN observations from the same flights. About 30 cloud penetrations from six flights were modeled. The temperature range of the observations was −16° to −32°C. Of the three simplified ice nucleation representations tested (deposition, evaporation freezing, and condensation/immersion droplet freezing), condensation/immersion freezing reproduced the lee wave cloud observations best. IN concentrations derived from the modeling ranged from 0.1 to 13 L−1 compared to 0.4 to 6 L−1 from an IN counter. A better correlation was found between temperature and the ratio of IN concentration to the concentration of large aerosol (>500 nm) than between IN concentration and the large aerosol concentration or temperature alone.

Current affiliation: Purdue University, West Lafayette, Indiana.

Corresponding author address: Paul Field, Met Office, Exeter EX1 3PB, United Kingdom. E-mail: paul.field@metoffice.gov.uk

Abstract

Heterogeneous ice nucleation is a source of uncertainty in models that represent ice clouds. The primary goal of the Ice in Clouds Experiment–Layer Clouds (ICE-L) field campaign was to determine if a link can be demonstrated between ice concentrations and the physical and chemical characteristics of the ambient aerosol. This study combines a 1D kinematic framework with lee wave cloud observations to infer ice nuclei (IN) concentrations that were compared to IN observations from the same flights. About 30 cloud penetrations from six flights were modeled. The temperature range of the observations was −16° to −32°C. Of the three simplified ice nucleation representations tested (deposition, evaporation freezing, and condensation/immersion droplet freezing), condensation/immersion freezing reproduced the lee wave cloud observations best. IN concentrations derived from the modeling ranged from 0.1 to 13 L−1 compared to 0.4 to 6 L−1 from an IN counter. A better correlation was found between temperature and the ratio of IN concentration to the concentration of large aerosol (>500 nm) than between IN concentration and the large aerosol concentration or temperature alone.

Current affiliation: Purdue University, West Lafayette, Indiana.

Corresponding author address: Paul Field, Met Office, Exeter EX1 3PB, United Kingdom. E-mail: paul.field@metoffice.gov.uk
Save
  • Ansmann, A., and Coauthors, 2008: Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, D04210, doi:10.1029/2007JD008785.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part I: Wave clouds. J. Atmos. Sci., 63, 31603185.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1995: Ice formation in wave clouds: Observed enhancement during evaporation. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 147–152.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 12441259.

  • Cotton, R. J., and P. R. Field, 2002: Ice nucleation characteristics of an isolated wave cloud. Quart. J. Roy. Meteor. Soc., 128, 24172437.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. C. Rogers, S. M. Kreidenweis, Y. Chen, C. H. Twohy, D. Baumgardner, A. J. Heymsfield, and K. R. Chan, 1998: The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS. Geophys. Res. Lett., 25, 13871390.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410L07808; Corrigendum, 36, L07808, doi:10.1029/2009GL037639.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222.

    • Search Google Scholar
    • Export Citation
  • Durant, A. J., and R. A. Shaw, 2005: Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res., 114, D06202, doi:10.1029/2008JD011095.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24372450.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2001: Ice nucleation in orographic wave clouds: Measurements made during INTACC. Quart. J. Roy. Meteor. Soc., 127, 14931512.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006a: Shattering and particle interarrival times measured by optical array probes in ice cloud. J. Atmos. Oceanic Technol., 23, 13571371.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., O. Möhler, P. Connolly, M. Krämer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, 2006b: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys., 6, 29913006.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., 1968: Nucleation and growth of ice crystals in water and biological systems. Low Temperature Biology of Foodstuffs, J. Hawthorne, Ed., Pergamon Press, 29–32.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci., 50, 23352353.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52, 43024326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., P. R. Field, M. Bailey, D. C. Rogers, J. Stith, C. Twohy, Z. Wang, and S. Haimov, 2011: Ice in Clouds Experiment–Layer Clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations. J. Atmos. Sci., 68, 26282654.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 1998: Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett., 25, 13631366.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1970: The optical array: An alternative to extinction and scattering for particle size measurements. J. Appl. Meteor., 9, 86103.

    • Search Google Scholar
    • Export Citation
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, and M. D. Petters, 2007: Potential impact of Owens (dry) Lake dust on warm and cold cloud formation. J. Geophys. Res., 112, D12210, doi:10.1029/2007JD008413.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., M. K. MacVean, and A. P. Lock, 1993: Positivity-preserving numerical schemes for multidimensional advection. NASA Tech. Memo. 106055 (ICOMP-93905), 62 pp.

    • Search Google Scholar
    • Export Citation
  • Li, J., M. Pósfai, P. V. Hobbs, and P. R. Buseck, 2003: Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles. J. Geophys. Res., 108, 8484, doi:10.1029/2002JD002310.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1950: The nature of ice-forming nuclei in the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 5974.

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 30073021.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 41914207.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., R. A. Shaw, S. Hartmann, H. Wex, T. Clauss, J. Voigtländer, and F. Stratmann, 2011: Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior. Atmos. Chem. Phys., 11, 87678775, doi:10.5194/acp-11-8767-2011.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Ice nuclei emissions from biomass burning. J. Geophys. Res., 114, D07209, doi:10.1029/2008JD011532.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., P. J. DeMott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 27572783.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem., 81, 17921800.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010a: In situ chemical characterization of aged biomass-burning aerosols impacting cold wave clouds. J. Atmos. Sci., 67, 24512468.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2010b: Observation of playa salts as nuclei in orographic wave clouds. J. Geophys. Res., 115, D15301, doi:10.1029/2009JD013606.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2011: Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmos. Chem. Phys. Discuss., 11, 17 50717 550.

    • Search Google Scholar
    • Export Citation
  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen, 2001: A continuous-flow diffusion chamber for airborne measurements of ice nuclei. J. Atmos. Oceanic Technol., 18, 725741.

    • Search Google Scholar
    • Export Citation
  • Rosinski, J., and G. Morgan, 1991: Cloud condensation nuclei as a source of ice-forming nuclei in clouds. J. Aerosol Sci., 22, 123133.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. E., E. R. Wishart, and D. E. Shaw, 1976: The growth rates and densities of ice crystals between 3° and 21°C. J. Atmos. Sci., 33, 842850.

    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., and Coauthors, 2009: An overview of aircraft observations from the Pacific Dust Experiment campaign. J. Geophys. Res., 114, D05207, doi:10.1029/2008JD010924.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170.

    • Search Google Scholar
    • Export Citation
  • Swann, H., 1998. Sensitivity to the representation of precipitating ice in CRM simulations of deep convection. Atmos. Res., 48, 415435.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between 3° and 23°C. J. Meteor. Soc. Japan, 69, 1530.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and Coauthors, 2010: Relationships of biomass-burning aerosols to ice in orographic wave clouds. J. Atmos. Sci., 67, 24372450.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856.

  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 768776.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 513 230 17
PDF Downloads 252 91 7