• Alexander, M. J., 1998: Interpretations of observed climatological patterns in stratospheric gravity wave variance. J. Geophys. Res., 103, 86278640.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and K. Rosenlof, 1996: Nonstationary gravity wave forcing of the stratospheric zonal mean wind. J. Geophys. Res., 101, 23 46523 474.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and C. Barnet, 2007: Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64, 16521665.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , and H. Teitelbaum, 2007: Observation and analysis of a large amplitude mountain wave event over the Antarctic peninsula. J. Geophys. Res., 112, D21103, doi:10.1029/2006JD008368.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 21092134.

    • Search Google Scholar
    • Export Citation
  • Baumgaertner, A. J. G., , and A. J. McDonald, 2007: A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations. J. Geophys. Res., 112, D05103, doi:10.1029/2006JD007504.

    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., , T. Peter, , J. T. Bacmeister, , and S. D. Eckermann, 1999: Widespread solid particle formation by mountain waves in the Arctic stratosphere. J. Geophys. Res., 104, 18271836.

    • Search Google Scholar
    • Export Citation
  • de la Torre, A., , and P. Alexander, 2005: Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? Geophys. Res. Lett., 32, L17815, doi:10.1029/2005GL022959.

    • Search Google Scholar
    • Export Citation
  • de la Torre, A., , T. Schmidt, , and J. Wickert, 2006: A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys. Res. Lett., 33, L24809, doi:10.1029/2006GL027696.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1984: Inertia–gravity waves in the stratosphere. J. Atmos. Sci., 41, 33963404.

  • Eckermann, S. D., 1992: Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere. J. Geophys. Res., 97, 15 84915 866.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286, 15341537.

  • Ern, M., , P. Preusse, , and C. D. Warner, 2006: Some experimental constraints for spectral parameters used in the Warner and McIntyre gravity wave parameterization scheme. Atmos. Chem. Phys., 6, 43614381.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , P. Hoor, , L. L. Pan, , W. J. Randel, , M. I. Hegglin, , and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, doi:10.1029/2011RG000355.

    • Search Google Scholar
    • Export Citation
  • Hei, H., , T. Tsuda, , and T. Hirooka, 2008: Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP. J. Geophys. Res., 113, D04107, doi:10.1029/2007JD008938.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , G. Boccara, , R. A. Vincent, , F. Vial, , and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., , M. L. Buker, , G. J. Tripoli, , E. V. Browell, , W. B. Grant, , T. J. McGee, , and J. F. Burris, 2003: Nonorographic generation of Arctic polar stratospheric clouds during December 1999. J. Geophys. Res., 108, 8325, doi:10.1029/2001JD001034.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., , D. L. Wu, , and S. D. Eckermann, 2002: Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. J. Geophys. Res., 107, 8273, doi:10.1029/2002JD002091.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439448.

  • Kawatani, Y., , K. Sato, , T. J. Dunkerton, , S. Watanabe, , S. Miyahara, , and M. Takahashi, 2010a: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., , K. Sato, , T. J. Dunkerton, , S. Watanabe, , S. Miyahara, , and M. Takahashi, 2010b: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67, 981997.

    • Search Google Scholar
    • Export Citation
  • Kohma, M., , and K. Sato, 2011: The effects of atmospheric waves on the amounts of polar stratospheric clouds. Atmos. Chem. Phys. Discuss., 11, 16 96717 012, doi:10.5194/acpd-11-16967-2011.

    • Search Google Scholar
    • Export Citation
  • McDonald, A. J., , S. E. George, , and R. M. Woollands, 2009: Can gravity waves significantly impact PSC occurrence in the Antarctic? Atmos. Chem. Phys., 9, 88258840.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 2009: Spontaneous imbalance and hybrid vortex–gravity structures. J. Atmos. Sci., 66, 13151326.

  • McLandress, C., , and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J. Climate, 22, 15161540.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , M. J. Alexander, , and D. L. Wu, 2000: Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation. J. Geophys. Res., 105, 11 94711 967.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , S. Watanabe, , Y. Kawatani, , Y. Tomikawa, , M. Takahashi, , and K. Sato, 2010a: Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part I: Potential vorticity and heat budget analysis. J. Atmos. Sci., 67, 12931314.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K., , K. Sato, , S. Watanabe, , Y. Tomikawa, , Y. Kawatani, , and M. Takahashi, 2010b: Transport and mixing in the extratropical tropopause region in a high vertical resolution GCM. Part II: Relative importance of large-scale and small-scale dynamics. J. Atmos. Sci., 67, 13151336.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., , K. Sato, , and H. Akiyoshi, 2011: A study on the formation and trend of the Brewer–Dobson circulation. J. Geophys. Res., 116, D10117, doi:10.1029/2010JD014953.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716.

    • Search Google Scholar
    • Export Citation
  • Pfenninger, M., , A. Z. Liu, , G. C. Rapen, , and C. S. Gardner, 1999: Gravity wave characteristics in the lower atmosphere at South Pole. J. Geophys. Res., 104, 59635984.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809.

  • Preusse, P., , A. Dörnbrack, , S. D. Eckermann, , M. Riese, , B. Schaeler, , J. T. Bacmeister, , D. Broutman, , and K. U. Grossmann, 2002: Space-based measurements of stratospheric mountain waves by CRISTA. 1. Sensitivity, analysis method, and a case study. J. Geophys. Res., 107, 8178, doi:10.1029/2001JD000699.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1990: Vertical wind disturbances in the troposphere and lower stratosphere observed by the MU radar. J. Atmos. Sci., 47, 28032817.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , and T. J. Dunkerton, 1997: Estimates of momentum flux associated with equatorial Kelvin and gravity waves. J. Geophys. Res., 102, 26 24726 261.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , and M. Yoshiki, 2008: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa station. J. Atmos. Sci., 65, 37193735.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , M. Yamamori, , S. Ogino, , N. Takahashi, , Y. Tomikawa, , and T. Yamaouchi, 2003: A meridional scan of the stratospheric gravity wave field over the ocean in 2001 (MeSSO2001). J. Geophys. Res., 108, 4491, doi:10.1029/2002JD003219.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Watanabe, , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, doi:10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and Coauthors, 2011: Program of the Antarctic Syowa MST/IS radar (PANSY). SPARC Newsletter, Vol. 36, SPARC Office, Toronto, ON, Canada, 23–26. [Available online at http://www.sparc-climate.org/fileadmin/customer/6_Publications/Newsletter_PDF/36_SPARCnewsletter_Jan2011.pdf.]

    • Search Google Scholar
    • Export Citation
  • Shibata, T., , K. Sato, , H. Kobayashi, , M. Yabuki, , and M. Shiobara, 2003: The Antarctic polar stratospheric clouds under the temperature perturbation by nonorographic inertia gravity waves observed by micropulse lidar at Syowa Station. J. Geophys. Res., 108, 4105, doi:10.1029/2002JD002713.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32B, 348364.

  • Tomikawa, Y., , K. Sato, , S. Watanabe, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2008: Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM. J. Geophys. Res., 113, D17117, doi:10.1029/2008JD009786.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , K. Sato, , and M. Takahashi, 2006: A general circulation model study of orographic gravity waves over Antarctica excited by katabatic winds. J. Geophys. Res., 111, D18104, doi:10.1029/2005JD006851.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , M. Takahashi, , and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res., 113, D12110, doi:10.1029/2008JD010026.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., , Y. Tomikawa, , K. Sato, , Y. Kawatani, , K. Miyazaki, , and M. Takahashi, 2009: Simulation of the eastward 4-day wave in the Antarctic winter mesosphere using a gravity wave resolving general circulation model. J. Geophys. Res., 114, D16111, doi:10.1029/2008JD011636.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., 2004: Mesoscale gravity wave variances from AMSU-A radiances. Geophys. Res. Lett., 31, L12114, doi:10.1029/2004GL019562.

  • Wu, D. L., , and J. W. Waters, 1996: Satellite observations of atmospheric variances: A possible indication of gravity waves. Geophys. Res. Lett., 23, 36313634.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., , and J. H. Jiang, 2002: MLS observations of atmospheric gravity waves over Antarctica. J. Geophys. Res., 107, 4773, doi:10.1029/2002JD002390.

    • Search Google Scholar
    • Export Citation
  • Yamashita, C., , H.-L. Liu, , and X. Chu, 2010: Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations. Geophys. Res. Lett., 37, L22806, doi:10.1029/2010GL045437.

    • Search Google Scholar
    • Export Citation
  • Yoshiki, M., , and K. Sato, 2000: A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res., 105, 17 99518 011.

    • Search Google Scholar
    • Export Citation
  • Yoshiki, M., , N. Kizu, , and K. Sato, 2004: Energy enhancements of gravity waves in the Antarctic lower stratosphere associated with variations in the polar vortex and tropospheric disturbances. J. Geophys. Res., 109, D23104, doi:10.1029/2004JD004870.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in the upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 202 202 27
PDF Downloads 144 144 24

Gravity Wave Characteristics in the Southern Hemisphere Revealed by a High-Resolution Middle-Atmosphere General Circulation Model

View More View Less
  • 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
  • | 2 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan
© Get Permissions
Restricted access

Abstract

Gravity wave characteristics in the middle- to high-latitude Southern Hemisphere are analyzed using simulation data over 3 yr from a high-resolution middle-atmosphere general circulation model without using any gravity wave parameterizations. Gravity waves have large amplitudes in winter and are mainly distributed in the region surrounding the polar vortex in the middle and upper stratosphere, while the gravity wave energy is generally weak in summer. The wave energy distribution in winter is not zonally uniform, but it is large leeward of the southern Andes and Antarctic Peninsula. Linear theory in the three-dimensional framework indicates that orographic gravity waves are advected leeward significantly by the mean wind component perpendicular to the wavenumber vector. Results of ray-tracing and cross-correlation analyses are consistent with this theoretical expectation. The leeward energy propagation extends to several thousand kilometers, which explains part of the gravity wave distribution around the polar vortex in winter. This result indicates that orographic gravity waves can affect the mean winds at horizontal locations that are far distant from the source mountains. Another interesting feature is a significant downward energy flux in winter, which is observed in the lower stratosphere to the south of the southern Andes. The frequency of the downward energy flux is positively correlated with the gravity wave energy over the southern Andes. Partial reflection from a rapid increase in static stability around 10 hPa and/or gravity wave generation through nonlinear processes are possible mechanisms to explain the downward energy flux.

Current affiliation: IDEA Consultants, Inc., Institute of Environmental Informatics, Yokohama, Kanagawa, Japan.

Corresponding author address: Kaoru Sato, Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan. E-mail: kaoru@eps.s.u-tokyo.ac.jp

Abstract

Gravity wave characteristics in the middle- to high-latitude Southern Hemisphere are analyzed using simulation data over 3 yr from a high-resolution middle-atmosphere general circulation model without using any gravity wave parameterizations. Gravity waves have large amplitudes in winter and are mainly distributed in the region surrounding the polar vortex in the middle and upper stratosphere, while the gravity wave energy is generally weak in summer. The wave energy distribution in winter is not zonally uniform, but it is large leeward of the southern Andes and Antarctic Peninsula. Linear theory in the three-dimensional framework indicates that orographic gravity waves are advected leeward significantly by the mean wind component perpendicular to the wavenumber vector. Results of ray-tracing and cross-correlation analyses are consistent with this theoretical expectation. The leeward energy propagation extends to several thousand kilometers, which explains part of the gravity wave distribution around the polar vortex in winter. This result indicates that orographic gravity waves can affect the mean winds at horizontal locations that are far distant from the source mountains. Another interesting feature is a significant downward energy flux in winter, which is observed in the lower stratosphere to the south of the southern Andes. The frequency of the downward energy flux is positively correlated with the gravity wave energy over the southern Andes. Partial reflection from a rapid increase in static stability around 10 hPa and/or gravity wave generation through nonlinear processes are possible mechanisms to explain the downward energy flux.

Current affiliation: IDEA Consultants, Inc., Institute of Environmental Informatics, Yokohama, Kanagawa, Japan.

Corresponding author address: Kaoru Sato, Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan. E-mail: kaoru@eps.s.u-tokyo.ac.jp
Save