• Baer, F., , and F. N. Alyea, 1971: Effects of spectral truncation on general circulation and long-range prediction. J. Atmos. Sci., 28, 457480.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., , G. Paladin, , S. Patarnello, , P. Santangelo, , and A. Vulpiani, 1986: Intermittency and coherent structures in two-dimensional turbulence. J. Phys., 19A, 37713784.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , F. J. Doblas-Reyes, , T. N. Palmer, , G. Shutts, , and A. Weisheimer, 2008: Impact of quasi-stochastic cellular automaton backscatter on the systematic error and seasonal prediction skill of a global climate. Philos. Trans. Roy. Soc., 366A, 25592577.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , G. J. Shutts, , M. Leutbecher, , and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , S.-Y. Ha, , and J. Hacker, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., , and J. Frederiksen, 2003: The seasonal cycle of interannual variability and dynamical imprint of the seasonally varying mean state. J. Atmos. Sci., 60, 15771592.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1981: Stochastically driven large-scale circulations with multiple equilibria. J. Atmos. Sci., 38, 26062618.

  • Egger, J., 2005: A stochastic model for the angular momentum budget of latitude belts. J. Atmos. Sci., 62, 25922601.

  • Egger, J., , and K.-P. Hoinka, 2011: Stochastic forcing of potential vorticity: Observations. J. Atmos. Sci., 68, 13401346.

  • Franzke, C., , A. Majda, , and G. Branstator, 2007: The origin of nonlinear signatures of planetary wave dynamics: Mean phase space tendencies and contributions from non-Gaussianity. J. Atmos. Sci., 64, 39874003.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1984: The onset of blocking and cyclogenesis in Southern Hemisphere synoptic flows. J. Atmos. Sci., 41, 11161131.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1998: Precursors to blocking anomalies: The tangent linear and inverse problems. J. Atmos. Sci., 55, 24192436.

  • Frederiksen, J. S., 1999: Subgrid-scale parameterizations of eddy–topographic force, eddy viscosity, and stochastic backscatter for flow over topography. J. Atmos. Sci., 56, 14811494.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 2012: Statistical dynamical closures and subgrid modeling for inhomogeneous QG and 3D turbulence. Entropy, 14, 3257; doi:10.3390/e14010032.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and A. G. Davies, 1997: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci., 54, 24752492.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and G. Branstator, 2005: Seasonal variability of teleconnection patterns. J. Atmos. Sci., 62, 13461365.

  • Frederiksen, J. S., , and S. M. Kepert, 2006: Dynamical subgrid-scale parameterizations from direct numerical simulations. J. Atmos. Sci., 63, 30063019.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , and T. J. O’Kane, 2008: Entropy, closures and subgrid modelling. Entropy, 10, 635683.

  • Frederiksen, J. S., , M. R. Dix, , and S. M. Kepert, 1996: Systematic energy errors and tendency toward canonical equilibrium in atmospheric circulation models. J. Atmos. Sci., 53, 887904.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., , M. R. Dix, , and A. Davies, 2003: The effects of closure-based eddy diffusion on the climate and spectra of a GCM. Tellus, 55, 3144.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 6, 473485.

  • Kaas, E., , A. Guldberg, , W. May, , and M. Déqué, 1999: Using tendency errors to tune the parameterisation of unresolved dynamical scale interactions in atmospheric general circulation models. Tellus, 51A, 612629.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence. Dokl. Acad. Nauk SSSR, 32, 1618.

  • Koshyk, J. N., , and G. J. Boer, 1995: Parameterization of dynamical subgrid-scale processes in a spectral GCM. J. Atmos. Sci., 52, 965976.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R., 1959: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497543.

  • Kraichnan, R., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423.

  • Kraichnan, R., 1976: Eddy viscosity in two and three dimensions. J. Atmos. Sci., 33, 15211536.

  • Laursen, L., , and E. Eliasen, 1989: On the effects of the damping mechanisms in an atmospheric circulation model. Tellus, 41A, 385400.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28, 145161.

  • Leith, C. E., 1990: Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer. Phys. Fluids, 2, 297299.

  • Majda, A. J., , I. Timofeyev, , and E. Vanden-Eijnden, 2003: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci., 60, 17051722.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , B. Gershgorin, , and Y. Yuan, 2010: Low-frequency climate response and fluctuation–dissipation theorems: Theory and practice. J. Atmos. Sci., 67, 11861201.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , D. G. Hahn, , and J. L. Holloway, 1979: Climate simulations with GFDL spectral models of the atmosphere: Effects of spectral truncation. GARP Publ. 22, 41–94.

    • Search Google Scholar
    • Export Citation
  • McComb, W. D., 1990: The Physics of Fluid Turbulence. Clarendon Press, 572 pp.

  • McComb, W. D., , and A. G. Watt, 1990: Conditional averaging procedure for the elimination of the small-scale modes from incompressible fluid turbulence at high Reynolds numbers. Phys. Rev. Lett., 65, 32813284.

    • Search Google Scholar
    • Export Citation
  • McComb, W. D., , and C. Johnson, 2001: Conditional mode elimination and scale-invariant dissipation in isotropic turbulence. Physica A, 292, 346382.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 1984: The emergence of isolated coherent vorticities in turbulent flow. J. Fluid Mech., 146, 2143.

  • Nastrom, G. D., , K. S. Gage, , and W. H. Jasperson, 1984: Kinetic energy spectrum of large- and mesoscale atmospheric processes. Nature, 310, 3638.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., , and J. S. Frederiksen, 2008a: A comparison of statistical dynamical and ensemble prediction methods during blocking. J. Atmos. Sci., 65, 426447.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., , and J. S. Frederiksen, 2008b: Statistical dynamical subgrid-scale parameterizations for geophysical flows. Phys. Scr., T132, 014033, doi:10.1088/0031-8949/2008/T132/014033.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Seiffert, R., , and J. S. von Storch, 2008: Impact of atmospheric small-scale fluctuations on climate sensitivity. Geophys. Res. Lett., 35, L10704, doi:10.1029/2008GL033483.

    • Search Google Scholar
    • Export Citation
  • Seiffert, R., , R. Blender, , and K. Fraedrich, 2006: Subscale forcing in a global atmospheric circulation model and stochastic parametrization. Quart. J. Roy. Meteor. Soc., 132, 16271643.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Tennant, W., , G. Shutts, , A. Arribas, , and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206.

    • Search Google Scholar
    • Export Citation
  • Vallgren, A., , and E. Lindborg, 2011: The enstrophy cascade in forced two-dimensional turbulence. J. Fluid Mech., 671, 168183.

  • Zidikheri, M. J., , and J. S. Frederiksen, 2009: Stochastic subgrid parameterizations for simulations of atmospheric baroclinic flows. J. Atmos. Sci., 66, 28442858.

    • Search Google Scholar
    • Export Citation
  • Zidikheri, M. J., , and J. S. Frederiksen, 2010a: Stochastic modelling of unresolved eddy fluxes. Geophys. Astrophys. Fluid Dyn., 104, 323348.

    • Search Google Scholar
    • Export Citation
  • Zidikheri, M. J., , and J. S. Frederiksen, 2010b: Stochastic subgrid-scale modelling for non-equilibrium geophysical flows. Philos. Trans. Roy. Soc., 368A, 145160.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 2
PDF Downloads 16 16 3

Subgrid Model with Scaling Laws for Atmospheric Simulations

View More View Less
  • 1 Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
  • | 2 Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia
© Get Permissions
Restricted access

Abstract

Subgrid-scale parameterizations with self-similar scaling laws are developed for large-eddy simulations (LESs) of atmospheric flows. The key new contribution is the development of scaling laws that govern how these parameterizations depend on the LES resolution and flow strength. Both stochastic and deterministic representations of the effects of subgrid-scale eddies on the retained scales are considered. The stochastic subgrid model consists of a backscatter noise term and a drain eddy viscosity, while in the deterministic subgrid model the net effect of these two terms is represented by a net eddy viscosity. In both cases the subgrid transfers are calculated self-consistently from the statistics of higher-resolution-reference direct numerical simulations (DNSs). The dependence of the subgrid parameterizations on the resolution of the LESs is determined for DNSs having resolutions up to triangular 504 wavenumber truncations. The subgrid parameterizations are developed for typical large-scale atmospheric flows and for different strengths and spectra of kinetic energy within a quasigeostrophic spectral model. LESs using the stochastic and deterministic subgrid parameterizations are shown to replicate the kinetic energy spectra of the reference DNS at the scales of the LESs. It is found that the maximum strengths of the drain, net, and backscatter viscosities satisfy scaling laws dependent on the LES truncation wavenumber and that the dependence of these eddy viscosities on total wavenumber can also be written as essentially universal functions that depend on flow strength and resolution. The scaling laws make the subgrid-scale parameterizations more generally applicable in LESs and remove the need to generate them from reference DNSs.

Corresponding author address: Jorgen S. Frederiksen, Centre for Australian Weather and Climate Research (CAWCR), CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia. E-mail: jorgen.frederiksen@csiro.au

Abstract

Subgrid-scale parameterizations with self-similar scaling laws are developed for large-eddy simulations (LESs) of atmospheric flows. The key new contribution is the development of scaling laws that govern how these parameterizations depend on the LES resolution and flow strength. Both stochastic and deterministic representations of the effects of subgrid-scale eddies on the retained scales are considered. The stochastic subgrid model consists of a backscatter noise term and a drain eddy viscosity, while in the deterministic subgrid model the net effect of these two terms is represented by a net eddy viscosity. In both cases the subgrid transfers are calculated self-consistently from the statistics of higher-resolution-reference direct numerical simulations (DNSs). The dependence of the subgrid parameterizations on the resolution of the LESs is determined for DNSs having resolutions up to triangular 504 wavenumber truncations. The subgrid parameterizations are developed for typical large-scale atmospheric flows and for different strengths and spectra of kinetic energy within a quasigeostrophic spectral model. LESs using the stochastic and deterministic subgrid parameterizations are shown to replicate the kinetic energy spectra of the reference DNS at the scales of the LESs. It is found that the maximum strengths of the drain, net, and backscatter viscosities satisfy scaling laws dependent on the LES truncation wavenumber and that the dependence of these eddy viscosities on total wavenumber can also be written as essentially universal functions that depend on flow strength and resolution. The scaling laws make the subgrid-scale parameterizations more generally applicable in LESs and remove the need to generate them from reference DNSs.

Corresponding author address: Jorgen S. Frederiksen, Centre for Australian Weather and Climate Research (CAWCR), CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia. E-mail: jorgen.frederiksen@csiro.au
Save