• Austin, J. M., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107.

  • Bacmeister, J. T., , and G. L. Stephens, 2010: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Boyle, J., , and S. A. Klein, 2010: Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res., 115, D23113, doi:10.1029/2010JD014262.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , and S. Rutledge, 1994: Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51, 26312652.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J.-Y. Grandpeix, , J.-M. Piriou, , J.-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., , and A. P. Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, doi:10.1002/qj.640.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., , and R. A. Houze, 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330352.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , S. Yeager, , R. B. Neale, , S. Levis, , and D. Bailey, 2009: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, doi:10.1002/qj.49712757104.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., , and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487.

  • Holloway, C. E., , and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683.

    • Search Google Scholar
    • Export Citation
  • Houghton, H. G., , and H. E. Cramer, 1951: A theory of entrainment in convective currents. J. Meteor., 8, 95102.

  • Jensen, M. P., , and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island Climate Research Facility. J. Climate, 19, 21052117.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kim, D., , and I. S. Kang, 2012: A bulk mass flux convection scheme for climate model: Description and moisture sensitivity. Climate Dyn., 38, 411429, doi:10.1007/s00382-010-0972-2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982.

    • Search Google Scholar
    • Export Citation
  • Lee, M. I., , I. S. Kang, , and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963992.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , E. J. Zipser, , S. K. Krueger, , and M. A. Zulauf, 2008: Cloud-resolving modeling of deep convection during KWAJEX. Part I: Comparison to TRMM satellite and ground-based radar observations. Mon. Wea. Rev., 136, 26992712.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., , G. Y. Liu, , G. L. Stephens, , and R. H. Johnson, 2009: Terminal versus transient cumulus congestus: A Cloudsat perspective. Geophys. Res. Lett., 36, L05808, doi:10.1029/2008GL036927.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., , G. Y. Liu, , and G. L. Stephens, 2010: Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett., 37, L09804, doi:10.1029/2010GL042904.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237.

  • Mather, J. H., , T. P. Ackerman, , W. E. Clements, , F. J. Barnes, , M. D. Ivey, , L. D. Hatfield, , and R. M. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79, 627642.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , L. E. Back, , P. A. O’Gorman, , and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W.-B. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc., 366A, 25792602.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384.

  • Neelin, J. D., , A. Bracco, , H. Luo, , J. C. McWilliams, , and J. E. Meyerson, 2010: Considerations for parameter optimization and sensitivity in climate models. Proc. Natl. Acad. Sci., 107, 21 34921 354, doi:10.1073/pnas.1015473107.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., , K. Yoneyama, , and J.-L. Redelsperger, 2000: The evolution of the tropical western Pacific atmosphere–ocean system following the arrival of a dry intrusion. Quart. J. Roy. Meteor. Soc., 126, 517548.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, doi:10.1038/nphys314.

  • Peters, O., , J. D. Neelin, , and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924.

  • Raymond, D. J., , and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718.

  • Robe, F. R., , and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275.

    • Search Google Scholar
    • Export Citation
  • Romps, D., , and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484.

  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical Western Pacific. Mon. Wea. Rev., 127, 29772991.

  • Sherwood, S. C., , T. Horinouchi, , and H. A. Zeleznik, 2003: Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 60, 18471856.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., , P. M. M. Soares, , and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489.

  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., , and G. K. Walker, 1999: Microphysics of clouds with the relaxed Arakawa–Schubert scheme (McRAS). Part II: Implementation and performance in GEOS II GCM. J. Atmos. Sci., 56, 32213240.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., , K. Yamazaki, , A. Kitoh, , and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. J. Geophys. Res., 114, D07109, doi:10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S. J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 18
PDF Downloads 49 49 17

Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Properties of the transition to strong deep convection, as previously observed in satellite precipitation statistics, are analyzed using parcel stability computations and a convective plume velocity equation. A set of alternative entrainment assumptions yields very different characteristics of the deep convection onset boundary (here measured by conditional instability and plume vertical velocity) in a bulk temperature–water vapor thermodynamic plane. In observations the threshold value of column water vapor above which there is a rapid increase in precipitation, referred to as the critical value, increases with temperature, but not as quickly as column saturation, and this can be matched only for cases with sufficiently strong entrainment. This corroborates the earlier hypothesis that entraining plumes can explain this feature seen in observations, and it places bounds on the lower-tropospheric entrainment. Examination of a simple interactive entrainment scheme in which a minimum turbulent entrainment is enhanced by a dynamic entrainment (associated with buoyancy-induced vertical acceleration) shows that the deep convection onset curve is governed by the prescribed minimum entrainment. Results from a 0.5° resolution version of the Community Climate System Model, whose convective parameterization includes substantial entrainment, yield a reasonable match to satellite observations in several respects. Temperature–water vapor dependence is seen to agree well with the plume calculations and with offline simulations performed using the convection scheme of the model. These findings suggest that the convective transition characteristics, including the onset curve in the temperature–water vapor plane, can provide a substantial constraint for entrainment assumptions used in climate model deep convective parameterizations.

Corresponding author address: J. David Neelin, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: neelin@atmos.ucla.edu

Abstract

Properties of the transition to strong deep convection, as previously observed in satellite precipitation statistics, are analyzed using parcel stability computations and a convective plume velocity equation. A set of alternative entrainment assumptions yields very different characteristics of the deep convection onset boundary (here measured by conditional instability and plume vertical velocity) in a bulk temperature–water vapor thermodynamic plane. In observations the threshold value of column water vapor above which there is a rapid increase in precipitation, referred to as the critical value, increases with temperature, but not as quickly as column saturation, and this can be matched only for cases with sufficiently strong entrainment. This corroborates the earlier hypothesis that entraining plumes can explain this feature seen in observations, and it places bounds on the lower-tropospheric entrainment. Examination of a simple interactive entrainment scheme in which a minimum turbulent entrainment is enhanced by a dynamic entrainment (associated with buoyancy-induced vertical acceleration) shows that the deep convection onset curve is governed by the prescribed minimum entrainment. Results from a 0.5° resolution version of the Community Climate System Model, whose convective parameterization includes substantial entrainment, yield a reasonable match to satellite observations in several respects. Temperature–water vapor dependence is seen to agree well with the plume calculations and with offline simulations performed using the convection scheme of the model. These findings suggest that the convective transition characteristics, including the onset curve in the temperature–water vapor plane, can provide a substantial constraint for entrainment assumptions used in climate model deep convective parameterizations.

Corresponding author address: J. David Neelin, Dept. of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. E-mail: neelin@atmos.ucla.edu
Save