• Ackerman, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Bony, S., , and J. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 1999: An intercomparison of radiatively driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391423.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977.

  • Caldwell, P., , and C. S. Bretherton, 2009: Large eddy simulation of the diurnal cycle in southeast Pacific stratocumulus. J. Atmos. Sci., 66, 432449.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , C. S. Bretherton, , and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., , C. S. Bretherton, , and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., , S. E. Yuter, , R. Wood, , and C. S. Bretherton, 2007: The three-dimensional structure and kinematics of drizzling stratocumulus. Mon. Wea. Rev., 135, 37673784.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., 2009: Investigating the simulation of cloud microphysical processes in numerical models using a one-dimensional dynamical framework. Atmos. Sci. Lett., 10, 207214.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • de Szoeke, S. P., , C. W. Fairall, , D. E. Wolfe, , L. Bariteau, , and P. Zuidema, 2010a: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , S. E. Yuter, , P. Zuidema, , C. W. Fairall, , and W. A. Brewer, 2010b: Ship-based observation of drizzling stratocumulus clouds from EPIC to VOCALS. CLIVAR Exchanges, No. 39, International CLIVAR Project Office, Southampton, United Kingdom, 11–13.

  • Feingold, G., , and S. M. Kreidenweis, 2002: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107, 4687, doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , S. M. Kreidenweis, , B. Stevens, , and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision–coalescence. J. Geophys. Res., 101, 21 39121 402.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. L. Eberhard, , D. E. Veron, , and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. Furrer, , P. Pilewskie, , L. A. Remer, , Q. Min, , and H. Jonsson, 2006: Aerosol indirect effects at Southern Great Plains during the May 2003 intensive operations period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., , C. W. Fairall, , and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52, 27882799.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Garreaud, R. D., , and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical southeast Pacific: A modeling study. J. Climate, 17, 16991710.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., , and P. V. Hobbs, 1995: Long-range transport of continental aerosols over the Atlantic Ocean and their effects on cloud structures. J. Atmos. Sci., 52, 29772984.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , S. A. Rutledge, , M. I. Biggerstaff, , and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1993: Cloud condensation nuclei near marine cumulus. J. Geophys. Res., 98, 26932702.

  • Khairoutdinov, M. F., , and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., , M. P. Khairoutdinov, , D. K. Lilly, , Z. N. Kogan, , and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , K. E. Kotenberg, , and N. B. Wood, 2007: An analytic longwave radiation formula for liquid layer clouds. Mon. Wea. Rev., 135, 689699.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., , P. C. Robinson, , and Y. L. Kogan, 2006: Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model. J. Geophys. Res., 111, D18204, doi:10.1029/2006JD007183.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , I. M. Held, , M. Zhao, , D. L. Williamson, , J. G. Olson, , and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., , and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158.

  • Savic-Jovcic, V., , and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Non-oscillatory option. J. Comput. Phys., 86, 355375.

    • Search Google Scholar
    • Export Citation
  • Stein, U., , and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115.

  • Stevens, B., , and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , W. R. Cotton, , G. Feingold, , and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701891.

  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., and Coauthors, 2005a: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , G. Vali, , K. Comstock, , R. Wood, , M. C. van Zanten, , P. H. Austin, , C. S. Bretherton, , and D. H. Lenschow, 2005b: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • van Zanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, doi:10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and G. Feingold, 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and G. Feingold, 2009b: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , G. Feingold, , R. Wood, , and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.

  • Wood, R., , M. Köhler, , R. Bennartz, , and C. O’Dell, 2009: The diurnal cycle of surface divergence over the global oceans. Quart. J. Roy. Meteor. Soc., 135, 14841493.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., , C. S. Bretherton, , H. A. Rand, , and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the southeast Pacific. Atmos. Chem. Phys., 10, 47574774.

    • Search Google Scholar
    • Export Citation
  • Xue, H., , G. Feingold, , and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , Y. L. Serra, , and R. A. Houze Jr., 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part II: Stratocumulus region. Bull. Amer. Meteor. Soc., 81, 483490.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 15681589.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 1
PDF Downloads 9 9 1

Thermodynamic and Aerosol Controls in Southeast Pacific Stratocumulus

View More View Less
  • 1 Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas
  • | 2 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 3 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

A near-large-eddy simulation approach with size-revolving (bin) microphysics is employed to evaluate the relative sensitivity of southeast Pacific marine boundary layer cloud properties to thermodynamic and aerosol parameters. Simulations are based on a heavily drizzling cloud system observed by the NOAA ship Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field campaign. A suite of numerical experiments examines the sensitivity of drizzle to variations in boundary layer depth and cloud condensation nuclei (CCN) concentration in a manner consistent with the variability of those parameters observed during VOCALS-Rex. All four simulations produce cellular structures and turbulence characteristics of a circulation driven predominantly in a bottom-up fashion. The cloud and subcloud layers are coupled by strong convective updrafts that provide moisture to the cloud layer. Distributions of reflectivity calculated from model droplet spectra agree well with reflectivity distributions from the 5-cm-wavelength scanning radar aboard the ship, and the statistical behavior of cells over the course of the simulation is similar to that documented in previous studies of southeast Pacific stratocumulus. The simulations suggest that increased aerosol concentration delays the onset of drizzle, whereas changes in the boundary layer height are more important in modulating drizzle intensity.

Corresponding author address: David B. Mechem, Atmospheric Science Program, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. E-mail: dmechem@ku.edu

Abstract

A near-large-eddy simulation approach with size-revolving (bin) microphysics is employed to evaluate the relative sensitivity of southeast Pacific marine boundary layer cloud properties to thermodynamic and aerosol parameters. Simulations are based on a heavily drizzling cloud system observed by the NOAA ship Ronald H. Brown during the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-Rex) field campaign. A suite of numerical experiments examines the sensitivity of drizzle to variations in boundary layer depth and cloud condensation nuclei (CCN) concentration in a manner consistent with the variability of those parameters observed during VOCALS-Rex. All four simulations produce cellular structures and turbulence characteristics of a circulation driven predominantly in a bottom-up fashion. The cloud and subcloud layers are coupled by strong convective updrafts that provide moisture to the cloud layer. Distributions of reflectivity calculated from model droplet spectra agree well with reflectivity distributions from the 5-cm-wavelength scanning radar aboard the ship, and the statistical behavior of cells over the course of the simulation is similar to that documented in previous studies of southeast Pacific stratocumulus. The simulations suggest that increased aerosol concentration delays the onset of drizzle, whereas changes in the boundary layer height are more important in modulating drizzle intensity.

Corresponding author address: David B. Mechem, Atmospheric Science Program, Department of Geography, University of Kansas, 1475 Jayhawk Blvd., 213 Lindley Hall, Lawrence, KS 66045-7613. E-mail: dmechem@ku.edu
Save