• Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., , and M. K. Yau, 1994: Baroclinic instability in a two-layer model with parameterized slantwise convection. J. Atmos. Sci., 51, 971990.

    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., , and M. K. Yau, 1996: The life cycle of a simulated marine cyclone: Energetics and PV diagnostics. J. Atmos. Sci., 53, 639653.

    • Search Google Scholar
    • Export Citation
  • Balasubramanian, G., , and S. T. Garner, 1997: The equilibration of short baroclinic waves. J. Atmos. Sci., 54, 28502871.

  • Bannon, P. R., 1986: Linear development of quasi-geostrophic baroclinic disturbances with condensational heating. J. Atmos. Sci., 43, 22612276.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , and M. J. Miller, 1986: A new convective adjustement scheme. Part II: Single columns tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 608 pp.

    • Search Google Scholar
    • Export Citation
  • Bouchut, F., , and V. Zeitlin, 2010: A robust well-balanced scheme for multi-layer shallow water equations. Discrete Cont. Dyn. Syst., 13B, 739–758.

    • Search Google Scholar
    • Export Citation
  • Bouchut, F., , J. Lambaerts, , G. Lapeyre, , and V. Zeitlin, 2009: Fronts and nonlinear waves in a simplified shallow-water model of the atmosphere with moisture and convection. Phys. Fluids, 21, 116604, doi:10.1063/1.3265970.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341.

  • Cairns, R. A., 1979: The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech., 92, 114.

  • Charney, J. G., 1947: The dynamics of the long waves in a baroclinic westerly current. J. Meteor., 4, 135165.

  • Charney, J. G., , and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875.

  • Davies, H. C., , Ch. Schär, , and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., , M. Fantini, , and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , A. J. Majda, , and O. M. Pauluis, 2004: Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sci., 2, 591626.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , O. Pauluis, , and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Studies of moisture effects in simple atmospheric models: The stable case. Geophys. Astrophys. Fluid Dyn., 19, 119152.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., , L. E. Branscome, , and D. A. Stewart, 1992: Life cycles of moist baroclinic eddies. J. Atmos. Sci., 49, 306319.

  • Hazel, P., 1972: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech., 51, 3961.

  • Heifetz, E., , C. H. Bishop, , B. J. Hoskins, , and J. Methven, 2004: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130, 211231.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1972: An Introduction to Dynamic Meteorology. Academic Press, 319 pp.

  • Hoskins, B. J., , and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and N. G. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows-cold and warm fronts. J. Atmos. Sci., 36, 16631680.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., , G. Lapeyre, , and G. Rivière, 2011: A quasigeostrophic model for moist storm tracks. J. Atmos. Sci., 68, 13061322.

  • Lambaerts, J., , G. Lapeyre, , and V. Zeitlin, 2011a: Moist versus dry barotropic instability in a shallow-water model of the atmosphere with moist convection. J. Atmos. Sci., 68, 12341252.

    • Search Google Scholar
    • Export Citation
  • Lambaerts, J., , G. Lapeyre, , V. Zeitlin, , and F. Bouchut, 2011b: Simplified two-layer models of precipitating atmosphere and their properties. Phys. Fluids, 23, 046603, doi:10.1063/1.3582356.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., , and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 20282037.

  • Moore, R. W., , M. T. Montgomery, , and H. C. Davies, 2008: The integral role of a diabatic Rossby vortex in a heavy snowfall event. Mon. Wea. Rev., 136, 18781897.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Nat. Acad. Sci. USA, 107, 19 17619 180.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590.

  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520.

    • Search Google Scholar
    • Export Citation
  • Sakai, S., 1989: Rossby-Kelvin instability: A new type of ageostrophic instability caused by resonance between Rossby waves and gravity waves. J. Fluid Mech., 202, 149176.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2011: Evaluation of a reduced model for investigating hurricane formation from turbulence. Quart. J. Roy. Meteor. Soc., 137, 155178.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., , and T. J. Dunkerton, 2009: Hurricane formation in diabatic Ekman turbulence. Quart. J. Roy. Meteor. Soc., 135, 823838.

    • Search Google Scholar
    • Export Citation
  • Scherer, E., , and V. Zeitlin, 2008: Instability of coupled geostrophic density fronts and its nonlinear evolution. J. Fluid Mech., 613, 309327.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1978: CISK-barotropic-baroclinic instability and the growth of monsoon depressions. J. Atmos. Sci., 35, 495508.

  • Thorncroft, C. D., , B. J. Hoskins, , and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755.

    • Search Google Scholar
    • Export Citation
  • Trefethen, L. N., 2000: Spectral Methods in MATLAB. SIAM, 165 pp.

  • Wernli, H., , S. Dirren, , M. A. Liniger, , and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar.’ Quart. J. Roy. Meteor. Soc., 128, 405429.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889908.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zeitlin, V., 2008: Decoupling of balanced and unbalanced motions and inertia–gravity wave emission: Small versus large Rossby numbers. J. Atmos. Sci., 65, 35283542.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 10
PDF Downloads 68 68 13

Moist versus Dry Baroclinic Instability in a Simplified Two-Layer Atmospheric Model with Condensation and Latent Heat Release

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure/CNRS/Universtité Pierre et Marie Curie/IUF, Paris, France
© Get Permissions
Restricted access

Abstract

The authors undertake a detailed analysis of the influence of water vapor condensation and latent heat release upon the evolution of the baroclinic instability. The framework consists in a two-layer rotating shallow-water model with moisture coupled to dynamics through mass exchange between the layers due to condensation/precipitation. The model gives all known in literature models of this kind as specific limits. It is fully nonlinear and ageostrophic. The reference state is a baroclinic Bickley jet. The authors first study its “dry” linear instability and then use the most unstable mode to initialize high-resolution numerical simulations of the life cycle of the instability in nonprecipitating (moisture being a passive tracer) and precipitating cases. A new-generation well-balanced finite-volume scheme is used in these simulations.

The evolution in the nonprecipitating case follows the standard cyclonic wave-breaking life cycle of the baroclinic instability, which is reproduced with a high fidelity. In the precipitating case, the onset of condensation significantly increases the growth rate of the baroclinic instability at the initial stages due to production of available potential energy by the latent heat release. Condensation occurs in frontal regions and wraps up around the cyclone, which is consistent with the moist cyclogenesis theory and observations. Condensation induces a clear-cut cyclone–anticyclone asymmetry. The authors explain the underlying mechanism and show how it modifies the equilibration of the flow at the late stages of the saturation of the instability. In spite of significant differences in the evolution, only weak differences in various norms of the perturbations remain between precipitating and nonprecipitating cases at the end of the saturation process.

Corresponding author address: Vladimir Zeitlin, LMD-ENS, 24 rue Lhomond, 75005 Paris, France. E-mail: zeitlin@lmd.ens.fr

Abstract

The authors undertake a detailed analysis of the influence of water vapor condensation and latent heat release upon the evolution of the baroclinic instability. The framework consists in a two-layer rotating shallow-water model with moisture coupled to dynamics through mass exchange between the layers due to condensation/precipitation. The model gives all known in literature models of this kind as specific limits. It is fully nonlinear and ageostrophic. The reference state is a baroclinic Bickley jet. The authors first study its “dry” linear instability and then use the most unstable mode to initialize high-resolution numerical simulations of the life cycle of the instability in nonprecipitating (moisture being a passive tracer) and precipitating cases. A new-generation well-balanced finite-volume scheme is used in these simulations.

The evolution in the nonprecipitating case follows the standard cyclonic wave-breaking life cycle of the baroclinic instability, which is reproduced with a high fidelity. In the precipitating case, the onset of condensation significantly increases the growth rate of the baroclinic instability at the initial stages due to production of available potential energy by the latent heat release. Condensation occurs in frontal regions and wraps up around the cyclone, which is consistent with the moist cyclogenesis theory and observations. Condensation induces a clear-cut cyclone–anticyclone asymmetry. The authors explain the underlying mechanism and show how it modifies the equilibration of the flow at the late stages of the saturation of the instability. In spite of significant differences in the evolution, only weak differences in various norms of the perturbations remain between precipitating and nonprecipitating cases at the end of the saturation process.

Corresponding author address: Vladimir Zeitlin, LMD-ENS, 24 rue Lhomond, 75005 Paris, France. E-mail: zeitlin@lmd.ens.fr
Save