• Bechtold, P., , M. Kohler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., , and A. J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721.

  • Biello, J. A., , and A. J. Majda, 2006: Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Oceans, 42, 152215.

    • Search Google Scholar
    • Export Citation
  • Biello, J. A., , A. J. Majda, , and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multiscale IPESD MJO model. J. Atmos. Sci., 64, 16361651.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67, 21942211.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., , and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., , and M. W. Moncrieff, 1987: A numerical simulation of quasi-stationary tropical convective bands. Quart. J. Roy. Meteor. Soc., 113, 929967.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Grabowski, W. W., 1998: Toward cloud resolving modeling of large-scale tropical circulation: A simple cloud microphysics parameterization. J. Atmos. Sci., 55, 32833298.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., , and M. W. Moncrieff, 2002: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations: Effects on interactive radiation. Quart. J. Roy. Meteor. Soc., 128, 23492375.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , R. Kershaw, , and P. M. Innes, 1997: Parameterization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Meteor. Soc., 123, 11531183.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., , S. S. Chen, , D. E. Kingsmill, , Y. Serra, , and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , H. Miura, , and B. Mapes, 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86A, 115.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Kershaw, R., , and D. Gregory, 1997: Parameterization of momentum transport by convection. I: Theory and cloud modeling results. Quart. J. Roy. Meteor. Soc., 123, 11331151.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , S. K. Krueger, , C.-H. Moeng, , P. A. Bogenschutz, , and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (15), doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 18151834.

  • LeMone, M. A., , and M. W. Moncrieff, 1994: Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, 281305.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , E. J. Zipser, , and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , M. Zhang, , and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , M.-I. Lee, , D. Kim, , I.-S. Kang, , and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883908.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2009: An MJO simulated by the NICAM at 14- and 7-km resolutions. Mon. Wea. Rev., 137, 32543268.

  • Madden, R., , and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Majda, A. J., , and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60, 393408.

  • Majda, A. J., , and J. A. Biello, 2004: A multi-scale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 101, 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392.

    • Search Google Scholar
    • Export Citation
  • Mapes, B., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , M. Satoh, , and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Mechem, D. B., , S. S. Chen, , and R. A. Houze Jr., 2006: Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 132, 709736.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007a: A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , H. Tomita, , A. T. Noda, , T. Nasuno, , and S. Iga, 2007b: A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophys. Res. Lett., 34, L02804, doi:10.1029/2006GL027448.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1997: Momentum transport by organized convection. The Physics and Parameterization of Moist Atmospheric Convection, R. K. Smith, Ed., Kluwer Academic, 231–253.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection at the intersection of weather and climate. Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805827.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical superclusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., , H. Miura, , M. Satoh, , A. T. Noda, , and K. Oouchi, 2009: Multi-scale organization of convection in a global numerical simulation of the December 2006 MJO event using explicit moist processes. J. Meteor. Soc. Japan, 87, 335345.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , H. Tomita, , S. Iga, , and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , A. Noda, , M. Satoh, , H. Miura, , H. Tomita, , T. Nasuno, , and S. Iga, 2009: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden–Julian oscillation event in a global cloud-system-resolving model. SOLA, 5, 6568.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , M. Khairoutdinov, , A. Arakawa, , and W. W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , H. Miura, , M. Satoh, , Y. N. Takayabu, , and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., 1999: Convective precursors and predictability in the tropical western Pacific. Mon. Wea. Rev., 127, 29772991.

  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Sobel, A. H., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2 (2), doi:10.3894/JAMES.2010.2.2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994a: Large-scale cloud disturbance associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994b: Large-scale cloud disturbance associated with equatorial waves. Part II: Westward-propagating inertia–gravity waves. J. Meteor. Soc. Japan, 72, 451465.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., , and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59, 18571871.

    • Search Google Scholar
    • Export Citation
  • Tung, W.-W., , and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59, 25352549.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal variations. The Asian Monsoon, B. Wang, Ed., Springer, 203–257.

  • Webster, P. J., 1972: Response of the tropical atmosphere to local steady forcing. Mon. Wea. Rev., 100, 518541.

  • Weisman, M. L., , W. C. Skamarock, , and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and M. Yanai, 1994: Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. J. Atmos. Sci., 51, 16401660.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , L. Deng, , X. Song, , and G. J. Zhang, 2007: Coupling of convective momentum transport with convective heating in global climate simulations. J. Atmos. Sci., 64, 13341349.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., , and R. A. Houze Jr., 1996: Momentum budget of a squall line with trailing stratiform precipitation: Calculations with a high-resolution numerical model. J. Atmos. Sci., 53, 36293652.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , M. Dong, , S. Gualdi, , H. H. Hendon, , E. D. Maloney, , A. Marshall, , K. R. Sperber, , and W. Wang, 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573592.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H.-R. Cho, 1991a: Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. J. Atmos. Sci., 48, 14831492.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and H.-R. Cho, 1991b: Parameterization of the vertical transport of momentum by cumulus clouds. Part II: Application. J. Atmos. Sci., 48, 24482457.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and X. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 11201139.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and M. Mu, 2005a: Effects of modifications to the Zhang–McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110, D09109, doi:10.1029/2004JD005617.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and M. Mu, 2005b: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 3
PDF Downloads 21 21 3

Convective Momentum Transport by Rainbands within a Madden–Julian Oscillation in a Global Nonhydrostatic Model with Explicit Deep Convective Processes. Part I: Methodology and General Results

View More View Less
  • 1 Atmosphere and Ocean Research Institute, Kashiwa, Chiba, Japan
  • | 2 Research Institute for Global Change, JAMSTEC, Yokohama, Kanagawa, Japan
  • | 3 Atmosphere and Ocean Research Institute, Kashiwa, Chiba, and Research Institute for Global Change, JAMSTEC, Yokohama, Kanagawa, Japan
  • | 4 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The convective momentum transport (CMT) properties of 13 215 rainbands within a Madden–Julian oscillation (MJO) event simulated by a global nonhydrostatic model are examined. CMT vectors, which represent horizontal accelerations to the mean winds due to momentum flux convergences of deviation winds, are derived for each rainband. The CMT vectors are composited according to their locations relative to the MJO center.

While a similar number of rainbands are detected in the eastern and western halves of the MJO convective envelope, CMT vectors with large zonal components are most plentiful between 0° and 20° to the west of the MJO center. The zonal components of the CMT vectors exhibit a coherent directionality and have a well-organized three-layer structure: positive near the surface, negative in the low to midtroposphere, and positive in the upper troposphere. In the low to midtroposphere, where the longitudinal difference in the mean zonal wind across the MJO is 10 m s−1 on average, the net acceleration due to CMT contributes about −16 m s−1.

Possible roles of the CMT are proposed. First, the CMT delays the eastward progress of the low- to midtroposphere westerly wind, hence delaying the eastward migration of the convectively favorable region and reducing the propagation speed of the entire MJO. Second, the CMT tilts the MJO flow structure westward with height. Furthermore, the CMT counteracts the momentum transport due to large-scale flows that result from the tilted structure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Tomoki Miyakawa, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. E-mail: miyakawa@aori.u-tokyo.ac.jp

Abstract

The convective momentum transport (CMT) properties of 13 215 rainbands within a Madden–Julian oscillation (MJO) event simulated by a global nonhydrostatic model are examined. CMT vectors, which represent horizontal accelerations to the mean winds due to momentum flux convergences of deviation winds, are derived for each rainband. The CMT vectors are composited according to their locations relative to the MJO center.

While a similar number of rainbands are detected in the eastern and western halves of the MJO convective envelope, CMT vectors with large zonal components are most plentiful between 0° and 20° to the west of the MJO center. The zonal components of the CMT vectors exhibit a coherent directionality and have a well-organized three-layer structure: positive near the surface, negative in the low to midtroposphere, and positive in the upper troposphere. In the low to midtroposphere, where the longitudinal difference in the mean zonal wind across the MJO is 10 m s−1 on average, the net acceleration due to CMT contributes about −16 m s−1.

Possible roles of the CMT are proposed. First, the CMT delays the eastward progress of the low- to midtroposphere westerly wind, hence delaying the eastward migration of the convectively favorable region and reducing the propagation speed of the entire MJO. Second, the CMT tilts the MJO flow structure westward with height. Furthermore, the CMT counteracts the momentum transport due to large-scale flows that result from the tilted structure.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Tomoki Miyakawa, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. E-mail: miyakawa@aori.u-tokyo.ac.jp
Save