• Barnes, S. L., 1978: Oklahoma thunderstorms on 29–30 April 1970. Part I: Morphology of a tornadic storm. Mon. Wea. Rev., 106, 673684.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., , M. J. Bader, , and R. H. Marles, 1982: Convective cloud merging and its effect on rainfall. Nature, 300, 4245.

  • Byers, H. R., , and R. R. Braham, 1949: The Thunderstorm Project. U.S. Weather Bureau, 287 pp.

  • Carey, L. D., , and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , W. A. Petersen, , and S. A. Rutledge, 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1976: Effects of urban areas and echo merging on radar echo behavior. J. Appl. Meteor., 15, 561570.

  • Changnon, S. A., , K. R. Gabriel, , E. W. Nancy, , and R. R. Czys, 1995: Exploratory analysis of seeding effects on rainfall: Illinois 1989. J. Appl. Meteor., 34, 12151224.

    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., , and M. DeMaria, 1986: An investigation of development of cumulonimbus systems over South Florida. Part I: Boundary layer interactions. Mon. Wea. Rev., 114, 524.

    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., , R. H. Holle, , P. T. Gannon, , and A. I. Watson, 1982: Convective evolution and merger in the FACE experimental area: Mesoscale convection and boundary layer interactions. J. Appl. Meteor., 21, 953977.

    • Search Google Scholar
    • Export Citation
  • Czys, R. R., , S. A. Changnon, , N. E. Westcott, , R. W. Scott, , and M. S. Petersen, 1995: Responses of warm-based, Midwest cumulus congestus to dynamic seeding trials. J. Appl. Meteor., 34, 11941214.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., , and S. A. Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 27302747.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., , W. R. Cotton, , and R. A. Pielke Sr., 2001: Numerical simulation of tornadogenesis in high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58, 15971629.

    • Search Google Scholar
    • Export Citation
  • Foot, G. B., , and C. G. Wade, 1982: Case study of a hailstorm in Colorado. Part I: Radar echo structure and evolution. J. Atmos. Sci., 39, 28282846.

    • Search Google Scholar
    • Export Citation
  • Frank, H., , and R. M. Lhermitte, 1976: Cell interaction and merger in a south Florida thunderstorm. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 151–156.

  • Fu, D., , and X. Guo, 2006: A cloud-resolving study on the role of cumulus merger in MCS with heavy precipitation. Adv. Atmos. Sci., 23, 857868.

    • Search Google Scholar
    • Export Citation
  • Guo, X., , and D. Fu, 2003: The formation process and cloud physical characteristics for a typical downburst-producing thunderstorm in Beijing. Chin. Sci. Bull., 48 (Supp. II), 7782.

    • Search Google Scholar
    • Export Citation
  • Hill, G. E., 1974: Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646673.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., , and M. W. Maier, 1980: Tornado formation from downdraft interaction in the FACE mesonetwork. Mon. Wea. Rev., 108, 10101028.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., , J. Cunning, , J. Thomas, , P. Gannon, , and L. Teijeiro, 1977: A case study of mesoscale convection and cloud merger over South Florida. Preprints, 11th Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 428–435.

  • Houze, R. A., Jr., , and C.-P. Cheng, 1977: Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Mon. Wea. Rev., 105, 964980.

    • Search Google Scholar
    • Export Citation
  • James, R. P., , J. M. Fritsch, , and P. M. Markowsi, 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 26692691.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., , B. R. Morton, , X. S. Zhang, , and K. Nyguen, 1990: Some characteristics of thunderstorms over Bathurst and Melville Islands near Darwin, Australia. Quart. J. Roy. Meteor. Soc., 116, 11531172.

    • Search Google Scholar
    • Export Citation
  • Klimowski, B. A., , M. R. Hjelmfelt, , and M. J. Bunkers, 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727734.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., , B. Greets, , and S. J. Goodman, 1998: Analysis of a small, vigorous mesoscale convective system in a low-shear environment. Part I: Formation, radar echo structure, and lightning behavior. Mon. Wea. Rev., 126, 18121836.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., , S. Paech, , and S. Goodman, 2003: Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennessee valley region. Mon. Wea. Rev., 131, 172188.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., , and A. Shapiro, 1996: The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger. J. Atmos. Sci., 53, 25252545.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., , and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., , and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457.

    • Search Google Scholar
    • Export Citation
  • Levy, G., , and W. R. Cotton, 1984: A numerical investigation of mechanisms linking glaciation of the ice-phase to the boundary layer. J. Climate Appl. Meteor., 23, 15051519.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , and L. E. Joyce, 2001: A further study of the mechanisms of cell regeneration, propagation, and development within two-dimensional multicell storms. J. Atmos. Sci., 58, 29572988.

    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., 1977: The lognormal distribution of cumulus cloud populations. Mon. Wea. Rev., 105, 865872.

  • Ludlam, F. H., , and R. S. Scorer, 1953: Reviews of modern meteorology. 10: Convection in the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 317341.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237.

  • Malkus, J. S., , and R. S. Scorer, 1955: The erosion of cumulus towers. J. Meteor., 12, 4357.

  • Malkus, J. S., , and H. Riehl, 1964: Cloud Structure and Distributions over the Tropical Pacific Ocean. University of California Press, 229 pp.

  • Miller, L. J., , J. E. Dye, , and B. E. Martner, 1982: The 25 July 1976 case study: Airflow from Doppler radar observations and conceptual model of circulation. Hailstorms of the Central High Plains, Vol. 2, C. A. Knight and P. Squires, Eds., Colorado Associated University Press, 229–245.

  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., , Y.-H. Kuo, , R. D. Farley, , and C. S. Hwang, 1980: Numerical simulation of cloud interactions. J. Rech. Atmos., 14, 499516.

    • Search Google Scholar
    • Export Citation
  • Parker, M., , and R. Johnson, 2004a: Simulated convective lines with leading precipitation. Part I: Governing dynamics. J. Atmos. Sci., 61, 16371655.

    • Search Google Scholar
    • Export Citation
  • Parker, M., , and R. Johnson, 2004b: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. E., 1984: A triple-Doppler radar analysis of a discretely propagating multicell convective storm. J. Atmos. Sci., 41, 29732990.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., , and K. A. Emanuel, 2001: The effect of vertical wind shear on radiative–convective equilibrium states. J. Atmos. Sci., 58, 14271445.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and W. L. Woodley, 1993: Effects of cloud seeding in West Texas: Additional results and new insights. J. Appl. Meteor., 32, 18481866.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall line. J. Atmos. Sci., 45, 463485.

  • Schultz, P. J., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123, 33313343.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., , and F. H. Ludlam, 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94103.

  • Simpson, J., 1980: Downdrafts as linkages in dynamic cumulus seeding effects. J. Appl. Meteor., 19, 477487.

  • Simpson, J., , W. L. Woodley, , A. H. Miller, , and G. F. Cotton, 1971: Precipitation results of two randomized pyrotechnic cumulus seeding experiments. J. Appl. Meteor., 10, 526544.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , N. E. Westcott, , R. J. Clerman, , and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklimatol., 29, 140.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , T. D. Keenan, , B. Ferrier, , R. H. Simpson, , and G. J. Holland, 1993: Cumulus mergers in the maritime continent region. Meteor. Atmos. Phys., 51, 7399.

    • Search Google Scholar
    • Export Citation
  • Stalker, J. R., , and K. R. Knupp, 2003: Cell merger potential in multicell thunderstorms of weakly sheared environments: Cell separation distance versus planetary boundary layer depth. Mon. Wea. Rev., 131, 16781695.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , and K. Shimura, 2004: Tropical rain characteristics and microphysics in three-dimensional cloud model. J. Atmos. Sci., 61, 28172845.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , N. Yamaguchi, , and T. Kawano, 2001: Videosonde observation of torrential rain during Baiu season. Atmos. Res., 58, 205228.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci., 41, 29012917.

  • Tao, W.-K., , and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 29743004.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , W. C. Skamarock, , and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386407.

    • Search Google Scholar
    • Export Citation
  • Turpeinen, O., 1982: Cloud interactions and merging on day 261 of GATE. Mon. Wea. Rev., 110, 12381254.

  • Turpeinen, O., , and M. K. Yau, 1981: Comparisons of results from a three-dimensional cloud model with statistics of radar echoes on day 261 of GATE. Mon. Wea. Rev., 109, 14951511.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and D. A. Randall, 1994: The moist available energy of a conditionally unstable atmosphere. II: Further analysis of the GATE data. J. Atmos. Sci., 51, 703710.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382.

  • Weisman, M. L., , J. B. Klemp, , and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , W. C. Skamarock, , and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 1977: Radar characteristics of south Florida convective rainfall. Proc. Sixth Conf. on Planned and Inadvertent Weather Modification, Champaign–Urbana, IL, Amer. Meteor. Soc., 190–191.

  • Westcott, N. E., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219226.

  • Westcott, N. E., 1994: Merging of convective clouds: Cloud initiation, bridging, and subsequent growth. Mon. Wea. Rev., 122, 780790.

  • Westcott, N. E., , and P. C. Kennedy, 1989: Cell development and merger in an Illinois thunderstorm observed by Doppler radar. J. Atmos. Sci., 46, 117131.

    • Search Google Scholar
    • Export Citation
  • Wiggert, V., , G. J. Lockett, , and S. S. Ostlund, 1981: Radar rain shower growth histories and variations with wind speed, echo motion, location and merger status. Mon. Wea. Rev., 109, 14671494.

    • Search Google Scholar
    • Export Citation
  • Wilkins, E. M., , Y. K. Sasaki, , G. E. Gerber, , and W. H. Chaplin Jr., 1976: Numerical simulation of the lateral interaction between buoyant clouds. J. Atmos. Sci., 33, 13211329.

    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., , J. Jordan, , A. Barnston, , J. Simpson, , R. Biondini, , and J. Flueck, 1982: Rainfall results of the Florida Area Cumulus Experiment, 1970–76. J. Appl. Meteor., 21, 139164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 9
PDF Downloads 10 10 6

A Cloud-Resolving Simulation Study on the Merging Processes and Effects of Topography and Environmental Winds

View More View Less
  • 1 Laboratory for Cloud and Precipitation and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 2 Chinese Academy of Meteorological Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

The cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective system (MCS) on 23 August 2001 in the Beijing region. The merging processes can be grouped into three classes for the studied case: isolated nonprecipitating and precipitating cell merging, cloud cluster merging, and echo core or updraft core merging within cloud systems.

The mechanisms responsible for the multiscale merging processes were investigated. The merging process between nonprecipitating cells and precipitating cells and that between clusters is initiated by forming an upper-level cloud bridge between two adjacent clouds due to upper-level radial outflows in one vigorous cloud. The cloud bridge is further enhanced by a favorable middle- and upper-level pressure gradient force directed from one cloud to its adjacent cloud by accelerating cloud particles being horizontally transported from the cloud to its adjacent cloud and induce the redistribution of condensational heating, which destabilizes the air at and below the cloud bridge and forms a favorable low-level pressure structure for low-level water vapor convergence and merging process. The merging of echo cores within the mesoscale cloud happens because of the interactions between low-level cold outflows associated with the downdrafts formed by these cores.

Further sensitivity studies on the effects of topography and large-scale environmental winds suggest that the favorable pressure gradient force from one cloud to its adjacent cloud and stronger low-level water vapor convergence produced by the topographic lifting of large-scale low-level airflow determine further cloud merging processes over the mountain region.

Corresponding author address: Xueliang Guo, Chinese Academy of Meteorological Sciences, Beijing 100081, China. E-mail: guoxl@cams.cma.gov.cn

Abstract

The cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective system (MCS) on 23 August 2001 in the Beijing region. The merging processes can be grouped into three classes for the studied case: isolated nonprecipitating and precipitating cell merging, cloud cluster merging, and echo core or updraft core merging within cloud systems.

The mechanisms responsible for the multiscale merging processes were investigated. The merging process between nonprecipitating cells and precipitating cells and that between clusters is initiated by forming an upper-level cloud bridge between two adjacent clouds due to upper-level radial outflows in one vigorous cloud. The cloud bridge is further enhanced by a favorable middle- and upper-level pressure gradient force directed from one cloud to its adjacent cloud by accelerating cloud particles being horizontally transported from the cloud to its adjacent cloud and induce the redistribution of condensational heating, which destabilizes the air at and below the cloud bridge and forms a favorable low-level pressure structure for low-level water vapor convergence and merging process. The merging of echo cores within the mesoscale cloud happens because of the interactions between low-level cold outflows associated with the downdrafts formed by these cores.

Further sensitivity studies on the effects of topography and large-scale environmental winds suggest that the favorable pressure gradient force from one cloud to its adjacent cloud and stronger low-level water vapor convergence produced by the topographic lifting of large-scale low-level airflow determine further cloud merging processes over the mountain region.

Corresponding author address: Xueliang Guo, Chinese Academy of Meteorological Sciences, Beijing 100081, China. E-mail: guoxl@cams.cma.gov.cn
Save