• Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Bartels, D. L., , and R. A. Maddox, 1991: Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev., 119, 104118.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., , and S. A. Listemaa, 2000: An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteor., 39, 21292150.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1986: Kinematic vertical motion and relative vorticity profiles in a long-lived convective system. J. Atmos. Sci., 43, 12971300.

    • Search Google Scholar
    • Export Citation
  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313338.

  • Browning, K. A., , and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., , J. H. Merritt, , and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049.

    • Search Google Scholar
    • Export Citation
  • Done, J., , C. A. Davis, , and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117.

    • Search Google Scholar
    • Export Citation
  • Frederick, K., , and C. Schumacher, 2008: Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136, 206222.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., , and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118135.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , H. H. Hendon, , and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121.

    • Search Google Scholar
    • Export Citation
  • Hopper, L. J., Jr., , and C. Schumacher, 2009: Baroclinicity influences on storm divergence and stratiform rain: Subtropical upper-level disturbances. Mon. Wea. Rev., 137, 13381357.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396410.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. Brodzik, , C. Schumacher, , S. E. Yuter, , and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43, 11141132.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , R. Pincus, , C. Hannay, , and K.-M. Xu, 2004: Use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , S. Low-Nam, , and R. J. Pasch, 1983: Cumulus parameterization and rainfall rates II. Mon. Wea. Rev., 111, 815828.

  • Lang, S., , W.-K. Tao, , J. Simpson, , and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505527.

    • Search Google Scholar
    • Export Citation
  • Lenth, R. V., 1989: Quick and easy analysis of unreplicated factorials. Technometrics, 31, 469473.

  • Luo, Y., , Y. Wang, , H. Wang, , Y. Zheng, , and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, doi:10.1029/2010JD013873.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , D. J. Perkey, , and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. J. Atmos. Sci., 39, 16641674.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037.

  • Mapes, B. E., , and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and J. Lin, 2005: Doppler radar observations of mesoscale wind divergence in regions of tropical convection. Mon. Wea. Rev., 133, 18081824.

    • Search Google Scholar
    • Export Citation
  • May, P. T., , and T. P. Lane, 2009: A method for using weather radar data to test cloud resolving models. Meteor. Appl., 16, 425432.

  • Morrison, H., , G. Thompson, , and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1971a: Dynamical analysis of outflow from tornado-producing thunderstorms as revealed by ATS III pictures. J. Appl. Meteor., 10, 275294.

    • Search Google Scholar
    • Export Citation
  • Ninomiya, K., 1971b: Mesoscale modification of synoptic situations from thunderstorms development as revealed by ATS III and aerological data. J. Appl. Meteor., 10, 11031121.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and R. A. Houze Jr., 1987: A diagnostic modeling study of the trailing stratiform region of a midlatitude squall line. J. Atmos. Sci., 44, 26402656.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 20402053.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , R. A. Houze Jr., , and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2009: Quasi-stationary, extreme-rain producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555575.

    • Search Google Scholar
    • Export Citation
  • Silberstein, D. S., , D. B. Wolff, , D. A. Marks, , D. Atlas, , and J. L. Pippitt, 2008: Ground clutter as a monitor of radar stability at Kwajalein, RMI. J. Atmos. Oceanic Technol., 25, 20372045.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze Jr., , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 35033527.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. White paper, 5 pp. [Available online at http://www.atmos.washington.edu/~stoeling/RIP_sim_ref.pdf.]

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 3572.

  • Tao, W.-K., , J. Simpson, , and M. McCumber, 1989: An ice–water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Tao, W.-K., , J. Simpson, , C.-H. Sui, , B. Ferrier, , S. Lang, , J. Scala, , M.-D. Chou, , and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673690.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump in raindrop spectra. J. Atmos. Sci., 31, 10671078.

  • Warner, T. T., , and H.-M. Hsu, 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128, 22112231.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., , and R. A. Houze Jr., 1995: Multicell squall-line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641661.

    • Search Google Scholar
    • Export Citation
  • Ye, K., , and M. Hamada, 2000: Critical values of the Lenth method for unreplicated factorial designs. J. Qual. Technol., 32, 5766.

  • Yuter, S. E., , and R. A. Houze Jr., 1997: Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteor., 36, 847867.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , N. Bei, , R. Rotunno, , C. Snyder, , and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 0
PDF Downloads 4 4 0

Modeled and Observed Variations in Storm Divergence and Stratiform Rain Production in Southeastern Texas

View More View Less
  • 1 Department of Atmospheric Science, Earth Science, and Physics, University of Louisiana at Monroe, Monroe, Louisiana, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

Storm divergence profiles observed by an S-band Doppler radar are compared to ensemble simulations of 10 disparate precipitating systems occurring in warm-season, weakly baroclinic, and strongly baroclinic environments in southeastern Texas. Eight triply nested mesoscale model simulations are conducted for each case using single- and double-moment microphysics with four convective treatments (i.e., two convective parameterizations and explicit versus parameterized convection at 9 km). Observed and simulated radar reflectivities are objectively separated into convective, stratiform, and nonprecipitating anvil columns and comparisons are made between ensemble mean echo coverages and levels of nondivergence (LNDs). In both the model and observations, storms occurring in less baroclinic environments have more convective rain area, less stratiform rain area, and more elevated divergence profiles.

The model ensemble and observations agree best for well-organized leading-line trailing-stratiform systems. Excessive convective area fractions are simulated for several less-organized cases, especially those whose ensemble mean LNDs are about 1–2 km more elevated than observed. Simulations parameterizing convection on the intermediate grid produced less-elevated divergence profiles with smaller magnitudes compared to their explicit counterparts. In one warm-season case, utilizing double-moment microphysics when parameterizing convection on both outer grids generated lower LNDs associated with variations in convective intensity and depth, detraining less ice to anvil and stratiform regions at midlevels relative to its single-moment counterpart. Similarly, mesoscale convective vortex simulations employing an ensemble-based versus a single-closure convective parameterization on both outer grids produced the least-elevated heating structures (closer to observed), resulting in the weakest midlevel vortices.

Corresponding author address: Larry J. Hopper Jr., Department of Atmospheric Science, Earth Science, and Physics, University of Louisiana at Monroe, 700 University Ave., Monroe, LA 71209. E-mail: hopper@ulm.edu

Abstract

Storm divergence profiles observed by an S-band Doppler radar are compared to ensemble simulations of 10 disparate precipitating systems occurring in warm-season, weakly baroclinic, and strongly baroclinic environments in southeastern Texas. Eight triply nested mesoscale model simulations are conducted for each case using single- and double-moment microphysics with four convective treatments (i.e., two convective parameterizations and explicit versus parameterized convection at 9 km). Observed and simulated radar reflectivities are objectively separated into convective, stratiform, and nonprecipitating anvil columns and comparisons are made between ensemble mean echo coverages and levels of nondivergence (LNDs). In both the model and observations, storms occurring in less baroclinic environments have more convective rain area, less stratiform rain area, and more elevated divergence profiles.

The model ensemble and observations agree best for well-organized leading-line trailing-stratiform systems. Excessive convective area fractions are simulated for several less-organized cases, especially those whose ensemble mean LNDs are about 1–2 km more elevated than observed. Simulations parameterizing convection on the intermediate grid produced less-elevated divergence profiles with smaller magnitudes compared to their explicit counterparts. In one warm-season case, utilizing double-moment microphysics when parameterizing convection on both outer grids generated lower LNDs associated with variations in convective intensity and depth, detraining less ice to anvil and stratiform regions at midlevels relative to its single-moment counterpart. Similarly, mesoscale convective vortex simulations employing an ensemble-based versus a single-closure convective parameterization on both outer grids produced the least-elevated heating structures (closer to observed), resulting in the weakest midlevel vortices.

Corresponding author address: Larry J. Hopper Jr., Department of Atmospheric Science, Earth Science, and Physics, University of Louisiana at Monroe, 700 University Ave., Monroe, LA 71209. E-mail: hopper@ulm.edu
Save