• Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 105 (D5), 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., and S. J. Ghan, 2002: A parameterization of aerosol activation 3. Sectional representation. J. Geophys. Res., 107, 4026, doi:10.1029/2001JD000483.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and Coauthors, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.

  • Bell, T. L., and Coauthors, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A shortwave radiation parameterization for atmospheric studies. NASA Rep. TM-104606, 40 pp.

  • Chou, M.-D., W. Ridgway, and M.-H. Yan, 1999: Parameterizations for water vapor IR radiative transfer in both the middle and lower atmospheres. J. Atmos. Sci., 52, 11591167.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, and R. S. Hemler, 1999: Three-dimensional cloud system modeling of GATE convection. J. Atmos. Sci., 56, 18851912.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., C. Wang, J. Wilson, J. Ström, and R. Krejci, 2006: Explicit simulation of aerosol physics in a cloud-resolving model: Aerosol transport and processing in the free troposphere. J. Atmos. Sci., 63, 682696.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., A. Engström, and A. Söderberg, 2011: Impact of two-way aerosol–cloud interaction and changes in aerosol size distribution on simulated aerosol-induced deep convective cloud sensitivity. J. Atmos. Sci., 68, 685698.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Fridlind, A., and Coauthors, cited 2009: ARM/GCSS/SPARC TWP-ICE intercomparison study. [Available online at http://science.arm.gov/wg/cpm/scm/scmic6/index.html.]

  • Ghan, S., N. Laulainen, R. Easter, R. Wagener, S. Nemesure, E. Chapman, Y. Zhang, and R. Leung, 2001: Evaluation of aerosol direct radiative forcing in mirage. J. Geophys. Res., 106 (D6), 52955316.

    • Search Google Scholar
    • Export Citation
  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteor., 43, 10381056.

  • Grabowski, W. W., X. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 36843709.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., J.-I. Yano, and M. W. Moncrieff, 2000: Cloud-resolving modeling of tropical circulations driven by large-scale SST gradients. J. Atmos. Sci., 57, 20222039.

    • Search Google Scholar
    • Export Citation
  • Hallet, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628.

  • Hobbs, P. V., 1993: Aerosol–Cloud–Climate Interactions. Academic Press, 233 pp.

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Khain, A., and B. Lynn, 2009: Simulation of a supercell storm in clean and dirty atmosphere using weather research and forecast model with spectral bin microphysics. J. Geophys. Res., 114, D19209, doi:10.1029/2009JD011827.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 17211748.

    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365384.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096.

  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, LI4828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., M.-D. Chou, M.-H. Yan, and C.-H. Ho, 1998: Minor trace gas radiative forcing calculations using the k-distribution method with one-parameter scaling. J. Geophys. Res., 103, 31 64731 656.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., and G. Feingold, 2010: Precipitating cloud-system response to aerosol perturbations. Geophys. Res. Lett., 37, L23806, doi:10.1029/2010GL045596.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008a: Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Quart. J. Roy. Meteor. Soc., 134, 12011220.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, V. T. J. Phillips, and Y. Ming, 2008b: The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res., 113, D16202, doi:10.1029/2007JD009224.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, and V. T. J. Phillips, 2009: Sensitivity of aerosol and cloud effects on radiation to cloud types: Comparison between deep convective clouds and warm stratiform clouds over one-day period. Atmos. Chem. Phys., 9, 25552575.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., L. J. Donner, and J. E. Penner, 2010: Thunderstorm and stratocumulus: How does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys., 10, 68196837, doi:10.5194/acp-10-6819-2010.

    • Search Google Scholar
    • Export Citation
  • Lerach, D. G., B. J. Gaudet, and W. R. Cotton, 2008: Idealized simulations of aerosol influences on tornadogenesis. Geophys. Res. Lett., 35, L23806, doi:10.1029/2008GL035617.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1994: Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path. Proc. Fifth Symp. on Global Change, Nashville, TN, Amer. Meteor. Soc., 266–269.

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 19, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., and M. W. Moncrieff, 1996: A numerical study of the effects of ambient flow and shear on density currents. Mon. Wea. Rev., 124, 22822303.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci., 63, 968982.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert, 2005: Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CaPe rain event with squall line. Mon. Wea. Rev., 133, 5971.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. P. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and C.-H. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 24552464.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmos. Chem. Phys. Discuss., 11, 15 57315 629.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., J. A. Smith, L. Donner, J. D. Fast, W. I. Gustafson, Jr., E. G. Chapman, and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 13671391.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1991: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 34113424.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state university regional atmospheric modeling system (RAMS). Part I: Module description and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A double-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., C. Köhler, and K. D. Beheng, 2011: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model. Atmos. Chem. Phys. Discuss., 11, 20 20320 243.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and W.-K. Tao, 1993: The Goddard Cumulus Ensemble model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Ocean. Sci., 4, 73116.

    • Search Google Scholar
    • Export Citation
  • Soong, S.-T., and Y. Ogura, 1980: Response of trade wind cumuli to large-scale processes. J. Atmos. Sci., 37, 20352050.

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, doi:10.1038/nature08281.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convection under differing storm environments. J. Atmos. Sci., 67, 39043915.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Ocean. Sci., 4, 1954.

  • Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97137.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87, 15551572.

  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2000: The impact of dimensionality on long-term cloud resolving model simulations. Mon. Wea. Rev., 128, 15211535.

  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida Storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., K. Bower, C. Schiller, A. R. MacKenzie, T. Peter, H. Schlager, N. R. P. Harris, and P. T. May, 2008: SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection. Bull. Amer. Meteor. Soc., 89, 647662.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization: Part I. The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling open cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 32573275.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Xie, S., T. Hume, C. Jakob, S. A. Klein, and R. B. McCoy, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Xu, K. M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 intensive observation period data. Quart. J. Roy. Meteor. Soc., 128, 593624.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. McFarquhar, S. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan Dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, doi:10.1029/2007GL029876.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 3 3 3

Effect of Aerosol on Circulations and Precipitation in Deep Convective Clouds

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Chemical Sciences Division, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
Restricted access

Abstract

This study examines the effect of a mesoscale perturbation of aerosol on a larger-scale cloud system driven by deep convective clouds. An aerosol-perturbed domain of size 120 km is prescribed in the middle of the larger-scale domain of size 1100 km. Aerosol perturbations in the mesoscale domain result in an intensification of convection in a mesoscale convective system (MCS). This leads to an intensification of the larger-scale circulations, which in turn leads to an intensification of the larger-scale subsidence. While the invigorated convection enhances precipitation in the MCS, the intensified larger-scale subsidence acts to increase the larger-scale stability and thus to suppress convection and precipitation in the larger-scale domain. The suppression of precipitation in the larger-scale domain outweighs the enhancement of precipitation in the mesoscale domain, leading to suppressed precipitation over the entire domain. The ramifications of aerosol perturbations therefore need to be considered on scales much larger than the scale of the perturbation.

Corresponding author address: Seoung Soo Lee, NOAA/Earth System Research Laboratory, 325 Broadway, Boulder, CO 80301. E-mail: seoung.soo.lee@noaa.gov

Abstract

This study examines the effect of a mesoscale perturbation of aerosol on a larger-scale cloud system driven by deep convective clouds. An aerosol-perturbed domain of size 120 km is prescribed in the middle of the larger-scale domain of size 1100 km. Aerosol perturbations in the mesoscale domain result in an intensification of convection in a mesoscale convective system (MCS). This leads to an intensification of the larger-scale circulations, which in turn leads to an intensification of the larger-scale subsidence. While the invigorated convection enhances precipitation in the MCS, the intensified larger-scale subsidence acts to increase the larger-scale stability and thus to suppress convection and precipitation in the larger-scale domain. The suppression of precipitation in the larger-scale domain outweighs the enhancement of precipitation in the mesoscale domain, leading to suppressed precipitation over the entire domain. The ramifications of aerosol perturbations therefore need to be considered on scales much larger than the scale of the perturbation.

Corresponding author address: Seoung Soo Lee, NOAA/Earth System Research Laboratory, 325 Broadway, Boulder, CO 80301. E-mail: seoung.soo.lee@noaa.gov
Save