• Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723.

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Avriel, M., 2003: Nonlinear Programming: Analysis and Methods. Dover, 528 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1989: The stratospheric major warming of early December 1987. J. Atmos. Sci., 46, 28632884.

  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 11231142.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584.

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229.

  • Bishop, C., 1995: Neural Networks for Pattern Recognition. Oxford University Press, 482 pp.

  • Burges, C. J. C., 1998: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery, 2, 121167.

  • Burnham, K. P., and D. R. Anderson, 2002: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, 488 pp.

  • Butler, A. H., and L. M. Polvani, 2011: El Niño, la Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, doi:10.1029/2011GL048084.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., and K.-K. Tung, 2007a: The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J. Atmos. Sci., 64, 12671283.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., and K.-K. Tung, 2007b: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34, L04809, doi:10.1029/2006GL028521.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469; Corrigendum, 20, 5551.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109.

    • Search Google Scholar
    • Export Citation
  • Fawcett, T., 2006: An introduction to ROC analysis. Pattern Recog. Lett., 27, 861874.

  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

  • Holton, J. R., and H. C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global atmospheric circulation at 50 mb. J. Atmos. Sci., 37, 22002208.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H. C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60, 140148.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • Kohavi, R., 1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. Int. Joint Conf. on Artificial Intelligence, Vol. 2, Montreal, QC, Canada, IJCAI, 1137–1143. [Available online at http://www.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf.]

  • Kurkova, V., 1992: Kolmogorov’s theorem and multilayer neural networks. Neural Netw., 5, 501506.

  • Labitzke, K., and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the Northern Hemisphere winter. J. Atmos. Terr. Phys., 50, 197206.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and H. van Loon, 1999: The Stratosphere: Phenomena, History, and Relevance. Springer, 179 pp.

  • Labitzke, K., and B. Naujokat, 2000: The lower arctic stratosphere in winter since 1952. SPARC Newsletter, No. 15, SPARC Office, Toronto, ON, Canada, 11–14. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/News15/15_Labitzke.html.]

  • Labitzke, K., and M. Kunze, 2005: Stratospheric temperatures over the arctic: Comparison of three data sets. Meteor. Z., 14, 6574.

  • Labitzke, K., and M. Kunze, 2009a: On the remarkable arctic winter in 2008/2009. J. Geophys. Res., 114, D00102, doi:10.1029/2009JD012273.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., and M. Kunze, 2009b: Variability in the stratosphere: The Sun and the QBO. Climate and Weather of the Sun-Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, Terrapub, 257–278.

  • Manzini, E., M. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881.

    • Search Google Scholar
    • Export Citation
  • Marques de Sá, J. P., 2001: Pattern Recognition: Concepts, Methods, and Applications. Springer, 318 pp.

  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 14791494.

  • Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III. Polar vortex evolution and vertical structure. J. Climate, 22, 15661585.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765.

  • Mitchell, D. M., A. J. Charlton-Perez, and L. J. Gray, 2011a: Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci., 68, 11941213.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, and A. J. Charlton-Perez, 2011b: The structure and evolution of the stratospheric vortex in response to natural forcings. J. Geophys. Res., 116, D15110, doi:10.1029/2011JD015788.

    • Search Google Scholar
    • Export Citation
  • Montgomery, D., and Coauthors, 2006: Introduction to Linear Regression Analysis. 4th ed. Wiley-Interscience, 612 pp.

  • Naujokat, B., K. Labitzke, R. Lenschow, K. Petzoldt, and R.-C. Wohlfahrt, 1988: The stratospheric winter 1987/88: An unusually early major midwinter warming. Beilage zur Berliner Wetterkarte, SO 6/88, 20 pp.

  • Priestley, M. B., 1981: Spectral Analysis and Time Series. Academic Press, 890 pp.

  • Richter, J. H., K. Matthes, N. Calvo, and L. J. Gray, 2011: Influence of the quasi-biennial oscillation and El Niño–Southern Oscillation on the frequency of sudden stratospheric warmings. J. Geophys. Res., 116, D20111, doi:10.1029/2011JD015757.

    • Search Google Scholar
    • Export Citation
  • Ripley, B. D., 1996: Pattern Recognition and Neural Networks. 1st ed. Cambridge University Press, 416 pp.

  • Scherhag, R., 1952: Die explosionsartigen Stratosphärenerwärmungen des Spätwinters 1951/52. Ber. Deut. Wetterdienst, 6, 5163.

  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464.

  • Simmons, A., S. M. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, ECMWF, Reading, United Kingdom No. 110, 26–35.

  • Spackman, K. A., 1989: Signal detection theory: Valuable tools for evaluating inductive learning. Proceedings of the Sixth International Workshop on Machine Learning, Morgan Kaufmann, 160–163.

  • Theodoridis, S., and K. Koutroumbas, 2006: Pattern Recognition. 3rd ed. Elsevier, 837 pp.

  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart J. Roy. Meteor. Soc., 131, 29613012.

  • Vapnik, V., 1995: The Nature of Statistical Learning Theory. 1st ed. Springer-Verlag, 188 pp.

  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. 1st ed. Cambridge University Press, 484 pp.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. 1st ed. International Geophysics Series, Vol. 59, Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 4 4 4

Supervised Learning Approaches to Classify Sudden Stratospheric Warming Events

View More View Less
  • 1 Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam, and Institute for Meteorology, Free University of Berlin, Berlin, Germany
  • | 2 Institute of Computational Science, University of Lugano (USI), Lugano, Switzerland
Restricted access

Abstract

Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings, using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warmings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric warming events independently of a particular pressure level. In contrast to classification methods based on the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of a binary measure, it provides continuous conditional probabilities for each warming event representing the amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the atmospheric factors is estimated. It is shown how marginalized probability distributions can give insights into the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF (ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.

Corresponding author address: Christian Blume, Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Section 1.3: Earth System Modelling, Telegrafenberg, A20 329, 14473 Potsdam, Germany. E-mail: christian.blume@met.fu-berlin.de

Current affiliation: Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany.

Abstract

Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings, using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warmings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric warming events independently of a particular pressure level. In contrast to classification methods based on the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of a binary measure, it provides continuous conditional probabilities for each warming event representing the amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the atmospheric factors is estimated. It is shown how marginalized probability distributions can give insights into the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF (ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.

Corresponding author address: Christian Blume, Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Section 1.3: Earth System Modelling, Telegrafenberg, A20 329, 14473 Potsdam, Germany. E-mail: christian.blume@met.fu-berlin.de

Current affiliation: Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany.

Save