• Adlerman, E. J., and E. R. Williams, 1996: Seasonal variation of the global electrical circuit. J. Geophys. Res., 101, 29 67929 688.

  • Bailey, J. C., R. J. Blakeslee, D. E. Buechler, and H. J. Christian, 2007: Diurnal lightning distributions as observed by the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). Proc. 13th Int. Conf. on Atmospheric Electricity, Vol. II, Beijing, China, ICAE, 657–660.

  • Bering, E. A., III, A. A. Few, and J. R. Benbrook, 1998: The global electric circuit. Phys. Today, 51, 2430.

  • Burns, G. B., A. V. Frank-Kamenetsky, O. A. Troshichev, E. A. Bering, and B. D. Reddell, 2005: Interannual consistency of bi-monthly differences in diurnal variations of the ground-level, vertical electric field. J. Geophys. Res., 110, D10106, doi:10.1029/2004JD005469.

    • Search Google Scholar
    • Export Citation
  • Burns, G. B., B. A. Tinsley, A. R. Klekociuk, O. A. Troshichev, A. V. Frank-Kamenetsky, M. L. Duldig, E. A. Bering, and J. M. Clem, 2006: Antarctic polar plateau vertical electric field variations across heliocentric current sheet crossings. J. Atmos. Sol.-Terr. Phys., 68, 639654.

    • Search Google Scholar
    • Export Citation
  • Burns, G. B., B. A. Tinsley, A. V. Frank-Kamenetsky, and E. A. Bering, 2007: Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok. J. Geophys. Res., 112, D04103, doi:10.1029/2006JD007246.

    • Search Google Scholar
    • Export Citation
  • Burns, G. B., B. A. Tinsley, W. J. R. French, O. A. Troshichev, and A. V. Frank-Kamenetsky, 2008: Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J. Geophys. Res., 113, D15112, doi:10.1029/2007JD009618.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Hairston, M. R., and R. A. Heelis, 1995: Response time of the polar ionospheric convection pattern to changes in the north-south direction of the IMF. Geophys. Res. Lett., 22, 631634.

    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., 1967: Theory of the electrode effect. J. Atmos. Terr. Phys., 29, 709721.

  • Hoppel, W. A., and S. G. Gathman, 1972: Experimental determination of the eddy diffusion coefficient over the open ocean from atmospheric electric measurements. J. Phys. Oceanogr., 2, 248254.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46A, 325338.

  • Israel, H., 1973: Fields, Charges, Currents. Vol. 2, Atmospheric Electricity, Israel Program for Scientific Translations, 796 pp.

  • Kan, J. R., L. Zhu, A. T. Y. Lui, and S.-I. Akasofu, 1991: A magnetosphere–ionosphere coupling theory of substorms including magnetotail dynamics. Auroral Physics, C.-I. Meng, M. J. Rycroft, and L. A. Frank, Eds., Cambridge University Press, 311–321.

  • Khosrawi, F., J. Urban, M. C. Pitts, P. Voelger, P. Archtert, M. Kaphlanov, D. Murtagh, and K.-H. Fricke, 2011: Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010. Atmos. Chem. Phys. Discuss., 11, 11 37911 415, doi:10.5194/acpd-11-11379-2011.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. A. Williams, E. J. Zipser, and G. Burns, 2010: Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electric circuit. J. Atmos. Sci., 67, 309323.

    • Search Google Scholar
    • Export Citation
  • Lowe, D., and A. R. MacKenzie, 2008: Polar stratospheric cloud microphysics and chemistry. J. Atmos. Sol.-Terr. Phys., 70, 1340.

  • Mansurov, S. M., L. G. Mansurova, G. S. Mansurov, V. V. Mikhenvich, and A. M. Visotsky, 1974: North-south asymmetry of geomagnetic and tropospheric events. J. Atmos. Terr. Phys., 36, 19571962.

    • Search Google Scholar
    • Export Citation
  • Markson, R., 1978: Solar modulation of atmospheric electrification and possible implications for the sun–weather relationship. Nature, 273, 103109.

    • Search Google Scholar
    • Export Citation
  • Markson, R., 2007: The global circuit intensity: Its measurement and variation over the last 50 years. Bull. Amer. Meteor. Soc., 88, 223241.

    • Search Google Scholar
    • Export Citation
  • Nicoll, K. A., and R. G. Harrison, 2009: Vertical current flow through extensive layer clouds. J. Atmos. Sol.-Terr. Phys., 71, 20402046, doi:10.1016/j.jastp.2009.09.011.

    • Search Google Scholar
    • Export Citation
  • Park, C. G., 1976: Downward mapping of high-latitude ionospheric electric fields to the ground. J. Geophys. Res., 81, 168174.

  • Pitts, M. C., L. W. Thomason, L. R. Poole, and D. M. Winker, 2007: Characterization of polar stratospheric clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season. Atmos. Chem. Phys., 7, 52075228.

    • Search Google Scholar
    • Export Citation
  • Pitts, M. C., L. R. Poole, and L. W. Thomason, 2009: CALIPSO polar stratospheric cloud observations: Second-generation detection algorithm and composition discrimination. Atmos. Chem. Phys., 9, 75777589.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Reiter, R., 1992: Phenomena in Atmospheric and Environmental Electricity. Elsevier, 541 pp.

  • Ridley, A. J., G. Lu, C. R. Clauer, and V. O. Papitashvili, 1998: A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric dynamics technique. J. Geophys. Res., 103, 40234039.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon, 293 pp.

  • Russell, C. T., and R. L. McPherron, 1973: Semi-annual variation of geomagnetic activity. J. Geophys. Res., 78, 92108.

  • Rycroft, M. J., A. Odzimek, N. F. Arnold, M. Füllekrug, A. Kulak, and T. Neubert, 2007: New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites. J. Atmos. Sol.-Terr. Phys., 69, 24852509.

    • Search Google Scholar
    • Export Citation
  • Rycroft, M. J., R. G. Harrison, K. A. Nicoll, and E. A. Mareev, 2008: An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci. Rev., 137, 83105.

    • Search Google Scholar
    • Export Citation
  • Schwerdtfeger, W., and F. Prohaska, 1956: The semi-annual pressure oscillation, its cause and effects. J. Meteor., 13, 217218.

  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316.

  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Swinbank, R., and A. A. O’Neill, 1994: Stratosphere–troposphere data assimilation system. Mon. Wea. Rev., 122, 686702.

  • Tinsley, B. A., 2000: Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci. Rev., 94, 231258.

    • Search Google Scholar
    • Export Citation
  • Tinsley, B. A., 2008: The global atmospheric electric circuit and its effect on cloud microphysics. Rep. Prog. Phys., 71, 066801, doi:10.1088/0034-4885/71/6/066801.

    • Search Google Scholar
    • Export Citation
  • Tinsley, B. A., and R. A. Heelis, 1993: Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics. J. Geophys. Res., 98, 10 37510 384.

    • Search Google Scholar
    • Export Citation
  • Tinsley, B. A., and L. Zhou, 2006: Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. J. Geophys. Res., 111, D16205, doi:10.1029/2005JD006988.

    • Search Google Scholar
    • Export Citation
  • Tinsley, B. A., W. Liu, R. P. Rohrbaugh, and M. W. Kirkland, 1998: South Pole electric field responses to overhead ionospheric convection. J. Geophys. Res., 103, 26 13726 146.

    • Search Google Scholar
    • Export Citation
  • Torreson, O. W., W. C. Parkinson, O. H. Gish, and G. R. Wait, 1946: Scientific results of cruise VII of the Carnegie during 1928–1929: Ocean atmospheric–electric results. Carnegie Institute of Washington Publication 568, 178 pp.

  • Turner, J., and S. Pendlebury, 2004: The International Antarctic Weather Forecasting Handbook. British Antarctic Survey, 663 pp.

  • van den Broeke, M. R., 1998: The semi-annual oscillation and Antarctic climate. Part 1: influence on near surface temperatures (1957–79). Antarct. Sci., 10, 175183.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., 1967: The half-yearly oscillation in middle and high southern latitudes and the coreless winter. J. Atmos. Sci., 24, 472486.

    • Search Google Scholar
    • Export Citation
  • Weimer, D. R., 1996: A flexible, IMF dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett., 23, 25492552.

    • Search Google Scholar
    • Export Citation
  • Weimer, D. R., 2001: An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modelling November 24, 1996, event. J. Geophys. Res., 106, 407416.

    • Search Google Scholar
    • Export Citation
  • Weimer, D. R., 2005: Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884.

    • Search Google Scholar
    • Export Citation
  • Wilcox, J. M., and N. F. Ness, 1965: Quasi-stationary corotating structure in the interplanetary medium. J. Geophys. Res., 70, 57935805.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1994: Global circuit response to seasonal variations in global surface air temperature. Mon. Wea. Rev., 122, 19171929.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 2005: Lightning and climate: A review. Atmos. Res., 76, 272287.

  • Williams, E. R., 2009: The global electrical circuit: A review. Atmos. Res., 91, 140152, doi:10.1016/j.atmosres.2008.05.018.

  • Wilson, C. T. R., 1921: Investigations on lightning discharges and the electric field of thunderstorms. Philos. Trans. Roy. Soc. London, 221A, 73115, doi:10.1098/rsta.1921.0003.

    • Search Google Scholar
    • Export Citation
  • Zhao, X.-P., and A. J. Hundhausen, 1983: Spatial structure of the solar wind in 1976. J. Geophys. Res., 88, 451454.

  • Zhou, L., and B. A. Tinsley, 2007: Production of space charge at the boundaries of layer clouds. J. Geophys. Res., 112, D11203, doi:10.1029/2006JD007998.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and B. A. Tinsley, 2010: Global circuit model with clouds. J. Atmos. Sci., 67, 11431156.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 3 3 3

Monthly Diurnal Global Atmospheric Circuit Estimates Derived from Vostok Electric Field Measurements Adjusted for Local Meteorological and Solar Wind Influences

View More View Less
  • 1 Australian Antarctic Division, Australian Government, Kingston, and University of Tasmania, Hobart, Tasmania, Australia
  • | 2 University of Texas at Dallas, Richardson, Texas
  • | 3 Arctic and Antarctic Research Institute, St. Petersburg, Russia
  • | 4 Australian Antarctic Division, Australian Government, Kingston, Tasmania, Australia
Restricted access

Abstract

Local temperature, wind speed, pressure, and solar wind–imposed influences on the vertical electric field observed at Vostok, Antarctica, are evaluated by multivariate analysis. Local meteorology can influence electric field measurements via local conductivity. The results are used to improve monthly diurnal averages of the electric field attributable to changes in the global convective storm contribution to the ionosphere-to-earth potential difference. Statistically significant average influences are found for temperature (−0.47 ± 0.13% V m−1 °C−1) and wind speed [2.1 ± 0.5% V m−1 (m s−1)−1]. Both associations are seasonally variable. After adjusting the electric field values to uniform meteorological conditions typical of the Antarctic plateau winter (−70°C, 4.4 m s−1, and 623 hPa), the sensitivity of the electric field to the solar wind external generator influence is found to be 0.80 ± 0.07 V m−1 kV−1. This compares with the sensitivity of 0.82 V m−1 kV−1 to the convective meteorology generator that is inferred assuming an average ionosphere-to-ground potential difference of 240 kV taken with the annual mean electric field value of 198 V m−1. Monthly means of the Vostok electric field corrected for the influence of both local meteorology and the solar wind show equinoctial (March and September) and July local maxima. The July mean electric field is greater than the December value by approximately 8%, consistent with a Northern Hemisphere summer maximum. The solar wind–imposed potential variations in the overhead ionosphere are evaluated for three models that fit satellite measurements of ionospheric potential changes to solar wind data. Correlations with Vostok electric field variations peak with a 23-min interpolated delay relative to solar wind changes at the magnetopause.

Corresponding author address: Gary Burns, Australian Antarctic Division, Kingston, Tasmania 7050, Australia. E-mail: gary.burns@aad.gov.au

Abstract

Local temperature, wind speed, pressure, and solar wind–imposed influences on the vertical electric field observed at Vostok, Antarctica, are evaluated by multivariate analysis. Local meteorology can influence electric field measurements via local conductivity. The results are used to improve monthly diurnal averages of the electric field attributable to changes in the global convective storm contribution to the ionosphere-to-earth potential difference. Statistically significant average influences are found for temperature (−0.47 ± 0.13% V m−1 °C−1) and wind speed [2.1 ± 0.5% V m−1 (m s−1)−1]. Both associations are seasonally variable. After adjusting the electric field values to uniform meteorological conditions typical of the Antarctic plateau winter (−70°C, 4.4 m s−1, and 623 hPa), the sensitivity of the electric field to the solar wind external generator influence is found to be 0.80 ± 0.07 V m−1 kV−1. This compares with the sensitivity of 0.82 V m−1 kV−1 to the convective meteorology generator that is inferred assuming an average ionosphere-to-ground potential difference of 240 kV taken with the annual mean electric field value of 198 V m−1. Monthly means of the Vostok electric field corrected for the influence of both local meteorology and the solar wind show equinoctial (March and September) and July local maxima. The July mean electric field is greater than the December value by approximately 8%, consistent with a Northern Hemisphere summer maximum. The solar wind–imposed potential variations in the overhead ionosphere are evaluated for three models that fit satellite measurements of ionospheric potential changes to solar wind data. Correlations with Vostok electric field variations peak with a 23-min interpolated delay relative to solar wind changes at the magnetopause.

Corresponding author address: Gary Burns, Australian Antarctic Division, Kingston, Tasmania 7050, Australia. E-mail: gary.burns@aad.gov.au
Save