• Andrews, D. G., and M. E. McIntyre, 1978: On wave-action and its relatives. J. Fluid Mech., 89, 647664.

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Boos, W. R., 2012: Thermodynamic scaling of the hydrological cycle of the last glacial maximum. J. Climate, 25, 9921006.

  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-yr climatology of warm conveyor belts. J. Climate, 17, 218237.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Hoskins, 1985: Large-scale eddies and the general circulation of the troposphere. Advances in Geophysics, Vol. 28, Academic Press, 3–31.

  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 16881697.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144.

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2006: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., T. A. Shaw, and O. Pauluis, 2012: Moist recirculation and water vapor transport on dry isentropes. J. Atmos. Sci., 69, 875890.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and S. C. Chan, 2009: On the summertime strengthening of the Northern Hemisphere Pacific sea level pressure anticyclone. J. Climate, 22, 11471192.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., T. A. Shaw, and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pierrehumbert, R. T., 1998: Lateral mixing as a source of subtropical water vapor. Geophys. Res. Lett., 25, 151154.

  • Pierrehumbert, R. T., and H. Yang, 1993: Global chaotic mixing on isentropic surfaces. J. Atmos. Sci., 50, 24622480.

  • Pierrehumbert, R. T., and H. Yang, 1994: Production of dry air by isentropic mixing. J. Atmos. Sci., 51, 34373454.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211.

  • Schneider, T., K. L. Smith, P. A. O’Gorman, and C. C. Walker, 2006: A climatology of tropospheric zonal-mean water vapor fields and fluxes in isentropic coordinates. J. Climate, 19, 59185933.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 2 2 2

Tropical and Subtropical Meridional Latent Heat Transports by Disturbances to the Zonal Mean and Their Role in the General Circulation

View More View Less
  • 1 Department of Earth and Environmental Sciences, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • | 2 Center for Atmosphere Ocean Science, Courant Institute, New York University, New York, New York
Restricted access

Abstract

The spectrum of meridional latent heat transport in the tropics and subtropics by disturbances to the zonal mean during all seasons is analyzed. The transport is divided into stationary and transient planetary- and subplanetary-scale eddy contributions.

The stationary transport is largest in the subtropical lower troposphere and dominates the overall transport during summer. It is of planetary scale and the zonal scale of the transport corresponds to the number of subtropical anticyclones. The transient transport is large from the surface up to the midtroposphere and from the tropics to subpolar latitudes. It is dominated by the subplanetary-scale contribution during all seasons. Westward (eastward)- propagating waves dominate the transport in the tropics (subtropics and midlatitudes). The analysis reveals that, while the total eddy meridional latent heat transport is seamless from the deep tropics to the pole, it represents the sum of transport by distinct dynamical features.

The role of the eddy meridional latent heat transport in the moist isentropic circulation is assessed using the statistical transformed Eulerian mean formulation, which converts the eddy transports into streamfunctions. The addition of the eddy latent heat streamfunction to the Eulerian mean plus eddy sensible heat streamfunction increases the mass transport by a factor of 2–3 in the subtropics and midlatitudes. The eddy transport is found to dominate the transport across the subtropical boundary. During Northern Hemisphere summer there is virtually no circulation in the absence of eddy latent heat transport. The results highlight the important role of latent heat transport by subtropical anticyclones and tropical and baroclinic waves in the general circulation.

Corresponding author address: Dr. Tiffany A. Shaw, Department of Earth and Environmental Sciences, and Department of Applied Physics and Applied Mathematics, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY 10964. E-mail: tas2163@columbia.edu

Abstract

The spectrum of meridional latent heat transport in the tropics and subtropics by disturbances to the zonal mean during all seasons is analyzed. The transport is divided into stationary and transient planetary- and subplanetary-scale eddy contributions.

The stationary transport is largest in the subtropical lower troposphere and dominates the overall transport during summer. It is of planetary scale and the zonal scale of the transport corresponds to the number of subtropical anticyclones. The transient transport is large from the surface up to the midtroposphere and from the tropics to subpolar latitudes. It is dominated by the subplanetary-scale contribution during all seasons. Westward (eastward)- propagating waves dominate the transport in the tropics (subtropics and midlatitudes). The analysis reveals that, while the total eddy meridional latent heat transport is seamless from the deep tropics to the pole, it represents the sum of transport by distinct dynamical features.

The role of the eddy meridional latent heat transport in the moist isentropic circulation is assessed using the statistical transformed Eulerian mean formulation, which converts the eddy transports into streamfunctions. The addition of the eddy latent heat streamfunction to the Eulerian mean plus eddy sensible heat streamfunction increases the mass transport by a factor of 2–3 in the subtropics and midlatitudes. The eddy transport is found to dominate the transport across the subtropical boundary. During Northern Hemisphere summer there is virtually no circulation in the absence of eddy latent heat transport. The results highlight the important role of latent heat transport by subtropical anticyclones and tropical and baroclinic waves in the general circulation.

Corresponding author address: Dr. Tiffany A. Shaw, Department of Earth and Environmental Sciences, and Department of Applied Physics and Applied Mathematics, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY 10964. E-mail: tas2163@columbia.edu
Save