• Ackermann, A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Albrecht, B. A., D. A. Randall, and S. Nicholls, 1988: Observations of marine stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc., 69, 618626.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701186.

  • Barkstrom, B. R., and G. L. Smith, 1986: The Earth Radiation Experiment: Science and implementation. Rev. Geophys., 24, 379390.

  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Choi, I.-J., T. Iguchi, S.-W. Kim, S.-C. Yoon, and T. Nakajima, 2010: Simulation of aerosol effect on the microphysical properties of shallow stratocumulus cloud over East Asia region using a bin-based cloud resolving model. Atmos. Chem. Phys. Discuss., 10, 23 44923 495.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527.

  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 (D16), 21 39121 402.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.

    • Search Google Scholar
    • Export Citation
  • Kawamoto, K., T. Nakajima, and T. Y. Nakajima, 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14, 20452068.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 10401052.

  • Low, R. D. H., 1969: A generalized equation for the solution effect in droplet growth. J. Atmos. Sci., 26, 608611.

  • Ma, C.-C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean–atmosphere GCM study. J. Climate, 9, 16351645.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J. Kaufman, 2006: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. D. King, J. D. Spinhirne, and L. F. Radke, 1991: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci., 48, 728751.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., M. Tsukamoto, Y. Tsushima, A. Numaguti, and T. Kimura, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 48694878.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and T. Nakajima, 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52, 40434059.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010a: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet sizes. J. Atmos. Sci., 67, 18841896.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010b: Droplet growth in warm water clouds observed by the A-Train. Part II: A multisensory view. J. Atmos. Sci., 67, 18971907.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., S. Iwasaki, M. Yasui, H. Horie, H. Kuroiwa, and H. Kumagai, 2003: An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar. J. Geophys. Res., 108, 4226, doi:10.1029/2001JD001225.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2007: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. J. Geophys. Res., 112, D08216, doi:10.1029/2006JD007628.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. J. Geophys. Res., 113, D24213, doi:10.1029/2008JD009812.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22 91922 935.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 954 pp.

  • Randall, D. A., J. A. Coakley Jr., C. W. Fairall, R. A. Kropfli, and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65, 12901301.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products and validation. J. Atmos. Sci., 62, 947973.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298.

  • Sato, Y., T. Nakajima, K. Suzuki, and T. Iguchi, 2009: Application of a Monte Carlo integration method to collision and coagulation growth processes of hydrometeors in a bin-type model. J. Geophys. Res., 114, D09215, doi:10.1029/2008JD011247.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transf., 109, 27792793.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Stephens, G. L., and Coauthors, 2008: The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35, L08805, doi:10.1029/2008GL033590.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. Khain, 2006: Correlation pattern between effective radius and optical thickness of water clouds simulated by a spectral bin microphysics cloud model. SOLA, 2, 116119, doi:10.2151/sola.2006-030.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Y. Nakajima, and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 30193032.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • vanZanten, M. C., and B. Stevens, 2005: Observation of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 32373256.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., J. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), doi:10.1117/12.466539.

  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 3 3 3

Investigation of the Vertical Structure of Warm-Cloud Microphysical Properties Using the Cloud Evolution Diagram, CFODD, Simulated by a Three-Dimensional Spectral Bin Microphysical Model

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, and Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
  • | 2 Research and Information Center, Tokai University, Yoyogi, Tokyo, Japan
  • | 3 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
Restricted access

Abstract

This paper investigates the vertical structure of warm-cloud microphysical properties using a three-dimensional (3D) spectral bin microphysical model. A time series of contoured frequency by optical depth diagrams (CFODDs), which were proposed by previous studies, are calculated for the first time by a 3D model assuming two types of aerosol conditions (i.e., polluted and pristine). This contrasts with previous studies that obtained CFODDs using either a two-dimensional model or an accumulation of monthly and global observation data. The results show that the simulated CFODDs are characterized by distinctive patterns of radar reflectivities, similar to the patterns often observed by satellite remote sensing, even though the calculation domain of this study is limited to an area of 30 × 30 km2, whereas the satellite observations are of a global scale. A cloud microphysical box model is then applied to the simulated cloud field at each time step to identify the dominant process for each of the patterns. The results reveal that the wide variety of satellite-observed CFODD patterns can be attributed to different microphysical processes occurring in multiple cloud cells at various stages of the cloud life cycle.

Corresponding author address: Yousuke Sato, Advanced Institute for Computational Science, RIKEN, Kobe, Hyogo 6500047, Japan. E-mail: yousuke.sato@riken.jp

Abstract

This paper investigates the vertical structure of warm-cloud microphysical properties using a three-dimensional (3D) spectral bin microphysical model. A time series of contoured frequency by optical depth diagrams (CFODDs), which were proposed by previous studies, are calculated for the first time by a 3D model assuming two types of aerosol conditions (i.e., polluted and pristine). This contrasts with previous studies that obtained CFODDs using either a two-dimensional model or an accumulation of monthly and global observation data. The results show that the simulated CFODDs are characterized by distinctive patterns of radar reflectivities, similar to the patterns often observed by satellite remote sensing, even though the calculation domain of this study is limited to an area of 30 × 30 km2, whereas the satellite observations are of a global scale. A cloud microphysical box model is then applied to the simulated cloud field at each time step to identify the dominant process for each of the patterns. The results reveal that the wide variety of satellite-observed CFODD patterns can be attributed to different microphysical processes occurring in multiple cloud cells at various stages of the cloud life cycle.

Corresponding author address: Yousuke Sato, Advanced Institute for Computational Science, RIKEN, Kobe, Hyogo 6500047, Japan. E-mail: yousuke.sato@riken.jp
Save