• Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519.

  • Borys, R., D. Lowenthal, and D. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602.

    • Search Google Scholar
    • Export Citation
  • Borys, R., D. Lowenthal, S. Cohn, and W. Brown, 2003: Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challege, Meteor. Monogr., No. 21, Amer. Meteor. Soc., 29–32.

  • Cozic, J., and Coauthors, 2008: Chemical composition of free troposheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 8, 407423.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107 (25), 11 21711 222.

    • Search Google Scholar
    • Export Citation
  • Geresdi, I., 1998: Idealized simulation of the Colorado hailstorm case: Comparison of bulk and detailed microphysics. Atmos. Res., 45, 237252.

    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082.

    • Search Google Scholar
    • Export Citation
  • Hatzianastassiou, N., W. Wobrock, and A. I. Flossmann, 1998: The effects of cloud-processing of aerosol particles on clouds and radiation. Tellus, 50B, 478490.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1974: Ice Physics. Oxford Press, 837 pp.

  • Khain, A., M. Pinsky, M. Shapiro, and A. Pokrovsky, 2001: Collision rate of small graupel and water drops. J. Atmos. Sci., 58, 25712595.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation. Springer, 386 pp.

  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2004: Can anthropogenic aerosols decrease the snowfall rate? J. Atmos. Sci., 61, 24572468.

  • Lowenthal, D. H., R. D. Borys, W. Cotton, S. Saleeby, S. A. Cohn, and W. J. Brown, 2011: The altitude of snow growth by riming and vapor deposition in mixed-phase orographic clouds. Atmos. Environ., 45, 519522.

    • Search Google Scholar
    • Export Citation
  • Lynn, B., A. Khain, D. Rosenfeld, and W. L. Woodley, 2007: Effects of aerosols on precipitation from orographic clouds. J. Geophys. Res., 112, D10225, doi:10.1029/2006JD007537.

    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impact or based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sample description and first case study. Aerosol Sci. Technol., 41, 848864.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterization in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., and U. Lohmann, 2008: Sensitiviy studies of the role of aerosol in warm-phase orographic precipitation in different dynamical flow regimes. J. Atmos. Sci., 65, 25222542.

    • Search Google Scholar
    • Export Citation
  • Muhlbauer, A., T. Hashino, L. Xue, A. Teller, U. Lohmann, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds. Atmos. Chem. Phys. Discuss., 10, 10 48710 550.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., and R. Srivastava, 1979: A new aspect of snowflake aggregation theory. J. Atmos. Sci., 36, 484493.

  • Pitter, R. L., 1977: A reexamination of riming on thin ice plates. J. Atmos. Sci., 34, 684685.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of hail and graupel. Part I: Model physics. J. Atmos. Sci., 44, 27542763.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning, and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: The role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837860.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, and J. D. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625.

    • Search Google Scholar
    • Export Citation
  • Targino, A. C., R. Krejci, K. J. Noone, and P. Glantz, 2006: Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys., 6, 19771990.

    • Search Google Scholar
    • Export Citation
  • Teller, A., and Z. Levin, 2006: The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys., 6, 6780.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149.

    • Search Google Scholar
    • Export Citation
  • Wurzler, S., T. G. Reisin, and Z. Levin, 2000: Modification of mineral dust particles by cloud processing and subsequent effect on drop size distributions. J. Geophys. Res., 105, 45014512.

    • Search Google Scholar
    • Export Citation
  • Xue, L., 2010: Externally mixed aerosols to internally mixed aerosols: A numerical study of cloud processing using a bin aerosol-microphysics scheme coupled with WRF. Eos, Trans. Amer. Geophys. Union, (Fall Meeting Suppl.), Abstract A13A-0177.

  • Xue, L., I. Geresdi, and R. Rasmussen, 2010a: Cloud processing of internal mixed aerosol: A numerical study using a bin aerosol-microphysics scheme coupled with WRF. Preprints, 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., 2.2. [Available online at http://ams.confex.com/ams/pdfpapers/170624.pdf.]

  • Xue, L., A. Teller, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010b: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 33363354.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., K. S. Carslaw, and G. Feingold, 2005: Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development. Quart. J. Roy. Meteor. Soc., 131, 221245.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 5
PDF Downloads 3 3 3

Effects of Aerosol Solubility and Regeneration on Mixed-Phase Orographic Clouds and Precipitation

View More View Less
  • 1 * National Center for Atmospheric Research, Boulder, Colorado
  • | 2 The Cyprus Institute, Nicosia, Cyprus
  • | 3 University of Pécs, Pécs, Hungary
  • | 4 Saint Louis University, St. Louis, Missouri
  • | 5 SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
Restricted access

Abstract

A detailed bin aerosol-microphysics scheme has been implemented into the Weather Research and Forecast Model to investigate the effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. Two-dimensional simulations of idealized moist flow over two identical bell-shaped mountains were carried out using different combinations of aerosol regeneration, solubility, loading, ice nucleation parameterizations, and humidity. The results showed the following. 1) Pollution and regenerated aerosols suppress the riming process in mixed-phase clouds by narrowing the drop spectrum. In general, the lower the aerosol solubility, the broader the drop spectrum and thus the higher the riming rate. When the solubility of initial aerosol increases with an increasing size of aerosol particles, the modified solubility of regenerated aerosols reduces precipitation. 2) The qualitative effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation are not affected by different ice nucleation parameterizations. 3) The impacts of aerosol properties on rain are similar in both warm- and mixed-phase clouds. Aerosols exert weaker impact on snow and stronger impact on graupel compared to rain as graupel production is strongly affected by riming. 4) Precipitation of both warm- and mixed-phase clouds is most sensitive to aerosol regeneration, then to aerosol solubility, and last to modified solubility of regenerated aerosol; however, the precipitation amount is mainly controlled by humidity and aerosol loading.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, Boulder, CO 80301. E-mail: xuel@ucar.edu

Abstract

A detailed bin aerosol-microphysics scheme has been implemented into the Weather Research and Forecast Model to investigate the effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. Two-dimensional simulations of idealized moist flow over two identical bell-shaped mountains were carried out using different combinations of aerosol regeneration, solubility, loading, ice nucleation parameterizations, and humidity. The results showed the following. 1) Pollution and regenerated aerosols suppress the riming process in mixed-phase clouds by narrowing the drop spectrum. In general, the lower the aerosol solubility, the broader the drop spectrum and thus the higher the riming rate. When the solubility of initial aerosol increases with an increasing size of aerosol particles, the modified solubility of regenerated aerosols reduces precipitation. 2) The qualitative effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation are not affected by different ice nucleation parameterizations. 3) The impacts of aerosol properties on rain are similar in both warm- and mixed-phase clouds. Aerosols exert weaker impact on snow and stronger impact on graupel compared to rain as graupel production is strongly affected by riming. 4) Precipitation of both warm- and mixed-phase clouds is most sensitive to aerosol regeneration, then to aerosol solubility, and last to modified solubility of regenerated aerosol; however, the precipitation amount is mainly controlled by humidity and aerosol loading.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, Boulder, CO 80301. E-mail: xuel@ucar.edu
Save