A Mechanism for the Effect of Tropospheric Jet Structure on the Annular Mode–Like Response to Stratospheric Forcing

Isla R. Simpson Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Isla R. Simpson in
Current site
Google Scholar
PubMed
Close
,
Michael Blackburn National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by Michael Blackburn in
Current site
Google Scholar
PubMed
Close
, and
Joanna D. Haigh Department of Physics, Imperial College London, London, United Kingdom

Search for other papers by Joanna D. Haigh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric midlatitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower-latitude jets exhibit a larger shift.

The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spinup ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet but have similar subtropical zonal winds. It is found that lower-latitude jets exhibit a larger response due to stronger tropospheric eddy–mean flow feedbacks.

A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low-latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behavior across the spectrum of eddy phase speeds. In the configurations used, the higher-latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given subtropical zonal wind strength, the latitude of the eddy-driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.

Corresponding author address: Isla Simpson, Department of Physics, University of Toronto, 60 St George St., Toronto, ON M5S 1A7, Canada. E-mail: isla@atmosp.physics.utoronto.ca

Abstract

For many climate forcings the dominant response of the extratropical circulation is a latitudinal shift of the tropospheric midlatitude jets. The magnitude of this response appears to depend on climatological jet latitude in general circulation models (GCMs): lower-latitude jets exhibit a larger shift.

The reason for this latitude dependence is investigated for a particular forcing, heating of the equatorial stratosphere, which shifts the jet poleward. Spinup ensembles with a simplified GCM are used to examine the evolution of the response for five different jet structures. These differ in the latitude of the eddy-driven jet but have similar subtropical zonal winds. It is found that lower-latitude jets exhibit a larger response due to stronger tropospheric eddy–mean flow feedbacks.

A dominant feedback responsible for enhancing the poleward shift is an enhanced equatorward refraction of the eddies, resulting in an increased momentum flux, poleward of the low-latitude critical line. The sensitivity of feedback strength to jet structure is associated with differences in the coherence of this behavior across the spectrum of eddy phase speeds. In the configurations used, the higher-latitude jets have a wider range of critical latitude locations. This reduces the coherence of the momentum flux anomalies associated with different phase speeds, with low phase speeds opposing the effect of high phase speeds. This suggests that, for a given subtropical zonal wind strength, the latitude of the eddy-driven jet affects the feedback through its influence on the width of the region of westerly winds and the range of critical latitudes on the equatorward flank of the jet.

Corresponding author address: Isla Simpson, Department of Physics, University of Toronto, 60 St George St., Toronto, ON M5S 1A7, Canada. E-mail: isla@atmosp.physics.utoronto.ca
Save
  • Barnes, E. A., and D. L. Hartmann, 2011: Rossby wave scales, propagation, and the variability of the eddy-driven jets. J. Atmos. Sci., 68, 28932908.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., D. L. Hartmann, D. M. W. Frierson, and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Chan, C. J., and R. A. Plumb, 2009: The response to stratospheric forcing and its dependence on the state of the troposphere. J. Atmos. Sci., 66, 21072115.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34, L21805, doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and R. A. Plumb, 2009: Quantifying the eddy feedback and the persistence of the zonal index in an idealized atmospheric model. J. Atmos. Sci., 66, 37073720.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. M. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163.

  • Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi:10.1029/2005GL025332.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2007: Eddy–zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., S. Voronin, and L. M. Polvani, 2008: Testing the annular mode autocorrelation time scale in simple atmospheric general circulation models. Mon. Wea. Rev., 136, 15231536.

    • Search Google Scholar
    • Export Citation
  • Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 36723685.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637655.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., and B. J. Hoskins, 1982: Three-dimensional propagation of planetary waves. J. Meteor. Soc. Japan, 60, 109123.

  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., D. M. W. Frierson, J. A. Renwick, and G. J. Vallis, 2010: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate, 23, 61866199.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., 2010: Annular modes of the troposphere and stratosphere. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 59–91.

  • Lee, S., S.-W. Son, K. Grise, and S. B. Feldstein, 2007: A mechanism for the poleward propagation of zonal mean flow anomalies. J. Atmos. Sci., 64, 849868.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1975: Climate response and fluctuation dissipation. J. Atmos. Sci., 32, 20222026.

  • Lenton, A., F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue, and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36, L12606, doi:10.1029/2009GL038227.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327.

  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227.

  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883.

  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2010: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., G. A. Schmidt, and D. T. Shindell, 2006: Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J. Geophys. Res., 111, D18101, doi:10.1029/2005JD006323.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422.

  • Seager, R., N. Harnick, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37, L18502, doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, J. D. Haigh, and S. N. Sparrow, 2010: The impact of the state of the troposphere on the response to stratospheric heating in a simplified GCM. J. Climate, 23, 61666185.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2008a: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, doi:10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S. Lee, S. B. Feldstein, and J. E. Ten Hoeve, 2008b: Time scale and feedback of zonal-mean-flow variability. J. Atmos. Sci., 65, 935952.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on the Southern Hemisphere circulation changes: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry–climate models. V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD–1526. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/index.php.]

  • Sparrow, S., M. Blackburn, and J. D. Haigh, 2009: Annular variability and eddy–zonal flow interactions in a simplified atmospheric GCM. Part I: Characterization of high- and low-frequency behavior. J. Atmos. Sci., 66, 30753094.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2011: Ocean carbon uptake and storage influenced by wind bias in global climate models. Nat. Climate Change, 2, 4752.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., J. C. Fyfe, O. A. Saenko, M. Eby, and A. J. Weaver, 2007: Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds. Geophys. Res. Lett., 34, L12712, doi:10.1029/2006GL028797.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 80 27
PDF Downloads 139 50 17