Parameterization of Cloud Microphysics Based on Full Integral Moments

Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
and
Alexei Belochitski Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Alexei Belochitski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes a microphysics parameterization based on integral moments of the full drop size distributions (DSDs) as opposed to a partial moments approach (sometimes referred to as Kessler-type parameterization) based on the moments integrated separately over the cloud and rain drop portion of the drop spectrum. This approach does not assume a prescribed form of a DSD but employs as model variables full moments that have clear physical meaning: drop concentration and surface area, water content, precipitation flux, and radar reflectivity. These variables can be directly measured and assimilated into the model forecast cycle without intermediate retrievals. The approach avoids division of DSDs into cloud and rain drops. This eliminates the problem of defining the threshold between these two categories and subdivision of the physical coagulation process into artificial processes of autoconversion, accretion, and self-collection. The development and testing of the parameterization was made using the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) large-eddy simulation (LES) explicit warm rain microphysical model. The conversion and sedimentation rates were parameterized in the form of a product of power functions using nonlinear regression analysis to determine exponents of the approximated expressions. The comparison of bulk and explicit microphysics models demonstrated reasonably good prediction of both thermodynamic and microphysical parameters of the stratocumulus-topped boundary layer (STBL). The weaknesses and problems of the numerical implementation of the full moment approach are also discussed.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd, Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu

Abstract

This paper describes a microphysics parameterization based on integral moments of the full drop size distributions (DSDs) as opposed to a partial moments approach (sometimes referred to as Kessler-type parameterization) based on the moments integrated separately over the cloud and rain drop portion of the drop spectrum. This approach does not assume a prescribed form of a DSD but employs as model variables full moments that have clear physical meaning: drop concentration and surface area, water content, precipitation flux, and radar reflectivity. These variables can be directly measured and assimilated into the model forecast cycle without intermediate retrievals. The approach avoids division of DSDs into cloud and rain drops. This eliminates the problem of defining the threshold between these two categories and subdivision of the physical coagulation process into artificial processes of autoconversion, accretion, and self-collection. The development and testing of the parameterization was made using the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) large-eddy simulation (LES) explicit warm rain microphysical model. The conversion and sedimentation rates were parameterized in the form of a product of power functions using nonlinear regression analysis to determine exponents of the approximated expressions. The comparison of bulk and explicit microphysics models demonstrated reasonably good prediction of both thermodynamic and microphysical parameters of the stratocumulus-topped boundary layer (STBL). The weaknesses and problems of the numerical implementation of the full moment approach are also discussed.

Corresponding author address: Yefim Kogan, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Blvd, Suite 2100, Norman, OK 73072-7304. E-mail: ykogan@ou.edu
Save
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33, 193206.

  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31, 142155.

  • Clark, T. L., 1976: Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci., 33, 810821.

    • Search Google Scholar
    • Export Citation
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 18151842.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. E., and R. B. Schnabel, 1983: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, 378 pp.

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 10011033.

    • Search Google Scholar
    • Export Citation
  • Golovin, A. M., 1963: The solution of the coagulation equation for cloud droplets in a rising air current. Bull. Acad. Sci. SSSR Geophys. Ser., 5, 482487.

    • Search Google Scholar
    • Export Citation
  • Hulburt, H. M., and S. Katz, 1964: Some problems in particle technology: A statistical mechanical formulation. Chem. Eng. Sci., 19, 555574.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Khairoutdinov, M. F., and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 21152131.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization for large-eddy simulation models of marine stratocumulus. Mon. Wea. Rev., 128, 229243.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., M. P. Khairoutdinov, D. K. Lilly, Z. N. Kogan, and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52, 29232940.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and R. McGraw, 2004: An analytical expression for predicting the critical radius in the autoconversion parameterization. Geophys. Res. Lett., 31, L06121, doi:10.1029/2003GL019117.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, R. McGraw, and R. Wood, 2006: Parameterization of the autoconversion process. Part II: Generalization of Sundqvist-type parameterizations. J. Atmos. Sci., 63, 11031109.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of rain drops with size. J. Meteor., 5, 165166.

  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 304 pp.

  • Scott, W. T., 1968: Analytic studies of cloud droplet coalescence I. J. Atmos. Sci., 25, 5465.

  • Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and self-collection. Atmos. Res., 59-60, 265281.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., S. Laroche, and I. Zawadzki, 2005: A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part I: Description. J. Atmos. Sci., 62, 42064221.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection of south Florida. J. Appl. Meteor., 19, 10371063.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentrations. Geophys. Pura Appl., 43, 243249.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050.

  • Wood, R., P. R. Field, and W. R. Cotton, 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65, 109128.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 108 15
PDF Downloads 199 65 9