Observed Structure of Convectively Coupled Waves as a Function of Equivalent Depth: Kelvin Waves and the Madden–Julian Oscillation

Paul E. Roundy University at Albany, State University of New York, Albany, New York

Search for other papers by Paul E. Roundy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The view that convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) are distinct modes is tested by regressing data from the Climate Forecast System Reanalysis against satellite outgoing longwave radiation data filtered for particular zonal wavenumbers and frequencies by wavelet analysis. Results confirm that nearly dry Kelvin waves have horizontal structures consistent with their equatorial beta-plane shallow-water-theory counterparts, with westerly winds collocated with the lower-tropospheric ridge, while the MJO and signals along Kelvin wave dispersion curves at low shallow-water-model equivalent depths are characterized by geopotential troughs extending westward from the region of lower-tropospheric easterly wind anomalies through the region of lower-tropospheric westerly winds collocated with deep convection. Results show that as equivalent depth decreases from that of the dry waves (concomitant with intensification of the associated convection), the ridge in the westerlies and the trough in the easterlies shift westward. The analysis therefore demonstrates a continuous field of intermediate structures between the two extremes, suggesting that Kelvin waves and the MJO are not dynamically distinct modes. Instead, signals consistent with Kelvin waves become more consistent with the MJO as the associated convection intensifies. This result depends little on zonal scale. Further analysis also shows how activity in synoptic-scale Kelvin waves characterized by particular phase speeds evolves with the planetary-scale MJO.

Corresponding author address: Paul Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: proundy@albany.edu

Abstract

The view that convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) are distinct modes is tested by regressing data from the Climate Forecast System Reanalysis against satellite outgoing longwave radiation data filtered for particular zonal wavenumbers and frequencies by wavelet analysis. Results confirm that nearly dry Kelvin waves have horizontal structures consistent with their equatorial beta-plane shallow-water-theory counterparts, with westerly winds collocated with the lower-tropospheric ridge, while the MJO and signals along Kelvin wave dispersion curves at low shallow-water-model equivalent depths are characterized by geopotential troughs extending westward from the region of lower-tropospheric easterly wind anomalies through the region of lower-tropospheric westerly winds collocated with deep convection. Results show that as equivalent depth decreases from that of the dry waves (concomitant with intensification of the associated convection), the ridge in the westerlies and the trough in the easterlies shift westward. The analysis therefore demonstrates a continuous field of intermediate structures between the two extremes, suggesting that Kelvin waves and the MJO are not dynamically distinct modes. Instead, signals consistent with Kelvin waves become more consistent with the MJO as the associated convection intensifies. This result depends little on zonal scale. Further analysis also shows how activity in synoptic-scale Kelvin waves characterized by particular phase speeds evolves with the planetary-scale MJO.

Corresponding author address: Paul Roundy, Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222. E-mail: proundy@albany.edu
Save
  • Cho, H.-R., K. Fraedrich, and J. T. Wang, 1994: Cloud clusters, Kelvin wave-CISK, and the Madden–Julian oscillations in the equatorial troposphere. J. Atmos. Sci., 51, 6876.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237.

  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial circumnavigation of moisture signal associated with the Madden–Julian oscillation (MJO) during boreal winter. J. Meteor. Soc. Japan, 81, 851869.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950972.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Planetary waves on beta-planes. Mon. Wea. Rev., 95, 441451.

  • MacRitchie, K., and P. E. Roundy, 2012: Potential vorticity accumulation following atmospheric Kelvin waves in the active convective region of the MJO. J. Atmos. Sci., 69, 908914.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359.

  • Roundy, P. E., 2012: The spectrum of convectively coupled Kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci., 69, 21072111.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 21052132.

  • Roundy, P. E., and M. Janiga, 2012: Analysis of vertically propagating convectively coupled equatorial waves using observations and a non-hydrostatic Boussinesq model on the equatorial beta-plane. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 34833517.

  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131, 945960.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 20512065.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier Academic, 704 pp.

  • Wong, M. L. M., 2009: Wavelet analysis of the convectively coupled equatorial waves in the wavenumber–frequency domain. J. Atmos. Sci., 66, 209212.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 417 154 18
PDF Downloads 357 155 9