• Abarca, S. F., , and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of Hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., , and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, 60 pp.

  • Bell, M. M., , and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173.

  • Black, M. L., , and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Bosart, B. L., , W. C. Lee, , and R. M. Wakimoto, 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19, 322339.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H., , R. K. Smith, , and M. T. Montgomery, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 21282145.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , J. Molinari, , A. R. Aiyyer, , and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., , J. Persing, , M. T. Montgomery, , and S. A. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall and environment using a high-resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 18351857.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., , and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636.

    • Search Google Scholar
    • Export Citation
  • Dodge, P., , R. W. Burpee, , and F. D. Marks, 1999: The kinematic structure of a hurricane with sea level pressure less than 900 mb. Mon. Wea. Rev., 127, 9871004.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , P. G. Black, , and W. M. Gray, 2002: Flight-level instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., , W. M. Gray, , and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., , and R. A. Stenger, 2008: Advances in understanding of tropical wind structure changes. Asia–Pac. J. Atmos. Sci., 44, 1124.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026.

  • Fang, J., , and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672.

  • Franklin, J., , M. L. Black, , and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer core spinup process. J. Atmos. Sci., 68, 430449.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , Y. Wang, , M. Satoh, , T. Nasuno, , H. Miura, , and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 43054327.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , M. Xue, , A. Shapiro, , and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hawkins, J. D., , and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. Extended Abstracts, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 14B.1. [Available online at http://ams.confex.com/ams/28Hurricanes/techprogram/paper_138300.htm.]

  • Hence, D. A., , and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., , and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Houze, R. A., and Coauthors, 2006: The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 15031521.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , S. S. Chen, , B. F. Smull, , W.-C. Lee, , and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , W.-C. Lee, , and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., , M. T. Montgomery, , and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , T. Mateka, , and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Phys., 59, 83104.

    • Search Google Scholar
    • Export Citation
  • Judt, F., , and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci., 67, 35813599.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501.

    • Search Google Scholar
    • Export Citation
  • Leise, J. A., 1982: A multidimensional scale-telescoped filter and data extension package. NOAA Tech. Memo. ERL WPL-82, 19 pp.

  • Maclay, K. S., , M. DeMaria, , and T. H. Vonder Haar, 2008: Tropical cyclone inner-core kinetic energy evolution. Mon. Wea. Rev., 132, 48824898.

    • Search Google Scholar
    • Export Citation
  • Mainelli, M., , M. DeMaria, , L. K. Shay, , and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23, 316.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930.

  • Marks, F. D., , and R. A. Houze, 1987: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569582.

  • Marks, F. D., , R. A. Houze, , and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., , P. G. Black, , M. T. Montgomery, , and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259.

    • Search Google Scholar
    • Export Citation
  • Martinez, Y., , G. Brunet, , and M. K. Yau, 2010: On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67, 32533268.

    • Search Google Scholar
    • Export Citation
  • Melander, M. V., , J. C. McWilliams, , and N. J. Zabusky, 1987: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity change in hurricanes. Quart. J. Roy. Meteor. Soc., 538, 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. M. Bell, , S. D. Aberson, , and M. Black, 2006a: Superintense winds in Hurricane Isabel (2003). Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 13351347.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006b: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Nguyen, V. S., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582.

    • Search Google Scholar
    • Export Citation
  • Nong, S., , and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Quart. J. Roy. Meteor. Soc., 129, 33233338.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan., 60, 369380.

  • Oye, R., , C. Mueller, , and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 23492371.

  • Powell, M. D., , and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., , Z.-M. Tan, , and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , M. D. Eastin, , and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , B. D. McNoldy, , and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , W. H. Schubert, , and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.

  • Schubert, W. H., , and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583.

  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of hurricanes to balanced sources of heat and momentum. J. Atmos. Sci., 49, 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1981: The cyclostrophic adjustment of vortices with application to tropical cyclone modification. J. Atmos. Sci., 38, 20212030.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670.

  • Smith, R. K., , M. T. Montgomery, , and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335.

    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., , and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, doi:10.1029/2007JD008897.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181.

  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.

  • Wang, Y., , and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183.

  • Willoughby, H. E., , J. Clos, , and M. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411.

    • Search Google Scholar
    • Export Citation
  • Xu, J., , and Y. Wang, 2010: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., , Y. Liu, , and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , R. F. Rogers, , D. S. Nolan, , and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535.

    • Search Google Scholar
    • Export Citation
  • Zhou, X.-Q., , and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.

    • Search Google Scholar
    • Export Citation
  • Zhou, X.-Q., , B. Wang, , X.-Y. Ge, , and T. Li, 2011: Impact of secondary eyewall heating on tropical cyclone intensity change. J. Atmos. Sci., 68, 450456.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , R. J. Meitin, , and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 19
PDF Downloads 35 35 16

An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

View More View Less
  • 1 Naval Postgraduate School, Monterey, California, and National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Naval Postgraduate School, Monterey, California, and NOAA/AOML Hurricane Research Division, Miami, Florida
  • | 3 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent eyewall replacement.

During the approximately 1-day observation period, developing convection associated with the secondary eyewall became more symmetric and contracted inward. Latent heating in the emergent secondary eyewall led to the development of a distinct toroidal (overturning) circulation with inertially constrained radial inflow above the boundary layer and compensating subsidence in the moat region, properties that are consistent broadly with the balanced vortex response to an imposed ring of diabatic heating outside the primary eyewall. The primary eyewall’s convection became more asymmetric during the observation period, but the primary eyewall was still the dominant swirling wind and vorticity structure throughout the period.

The observed structure and evolution of Rita’s secondary eyewall suggest that spinup of the tangential winds occurred both within and above the boundary layer, and that both balanced and unbalanced dynamical processes played an important role. Although Rita’s core intensity decreased during the observation period, the observations indicate a 125% increase in areal extent of hurricane-force winds and a 19% increase in integrated kinetic energy resulting from the eyewall replacement.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Michael M. Bell, 589 Dyer Road, Root Hall, Room 254, Monterey, CA 93943. E-mail: mmbell@nps.edu

Abstract

Multiplatform observations of Hurricane Rita (2005) were collected as part of the Hurricane Rainband and Intensity Change Experiment (RAINEX) field campaign during a concentric eyewall stage of the storm’s life cycle that occurred during 21–22 September. Satellite, aircraft, dropwindsonde, and Doppler radar data are used here to examine the symmetric evolution of the hurricane as it underwent eyewall replacement.

During the approximately 1-day observation period, developing convection associated with the secondary eyewall became more symmetric and contracted inward. Latent heating in the emergent secondary eyewall led to the development of a distinct toroidal (overturning) circulation with inertially constrained radial inflow above the boundary layer and compensating subsidence in the moat region, properties that are consistent broadly with the balanced vortex response to an imposed ring of diabatic heating outside the primary eyewall. The primary eyewall’s convection became more asymmetric during the observation period, but the primary eyewall was still the dominant swirling wind and vorticity structure throughout the period.

The observed structure and evolution of Rita’s secondary eyewall suggest that spinup of the tangential winds occurred both within and above the boundary layer, and that both balanced and unbalanced dynamical processes played an important role. Although Rita’s core intensity decreased during the observation period, the observations indicate a 125% increase in areal extent of hurricane-force winds and a 19% increase in integrated kinetic energy resulting from the eyewall replacement.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Michael M. Bell, 589 Dyer Road, Root Hall, Room 254, Monterey, CA 93943. E-mail: mmbell@nps.edu
Save