• Bodas-Salcedo, A., , M. J. Webb, , M. E. Brooks, , M. A. Ringer, , K. D. William, , S. F. Milton, , and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E., , M. Miller, , B. Albrecht, , T. Ackerman, , J. Verlinde, , D. Babb, , R. Peters, , and W. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , G. J. Tripoli, , R. M. Rauber, , and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 16581680.

    • Search Google Scholar
    • Export Citation
  • Eito, H., , and K. Aonashi, 2009: Verification of hydrometeor properties simulated by a cloud-resolving model using a passive microwave satellite and ground-based radar observations for a rainfall system associated with the Baiu front. J. Meteor. Soc. Japan, 87A, 425446, doi:10.2151/jmsj.87A.425.

    • Search Google Scholar
    • Export Citation
  • Fan, J., , M. Ovtchinnikov, , J. M. Comstock, , S. A. McFarlane, , and A. Khain, 2009: Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics. J. Geophys. Res., 114, D04205, doi:10.1029/2008JD010782.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., , and P. S. du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253.

  • Hashimoto, A., , M. Murakami, , T. Kato, , and M. Nakamura, 2007: Evaluation of the influence of saturation adjustment with respect to ice on meso-scale model simulations for the case of 22 June, 2002. SOLA, 3, 8588, doi:10.2151/sola.2007-022.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., , and S. Emori, Eds., 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp.

  • Haynes, J. M., , R. T. Marchand, , Z. Luo, , A. Bodas-Salcedo, , and G. L. Stephens, 2007: A multipurpose radar simulation package: QuickBeam. Bull. Amer. Meteor. Soc., 88, 17231727.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., , T. S. L’Ecuyer, , G. L. Stephens, , S. D. Miller, , C. Mitrescu, , N. B. Wood, , and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , and A. J. Illingworth, 1999: The potential of spaceborne dual-wavelength radar to make global measurements of cirrus clouds. J. Atmos. Oceanic Technol., 16, 518531.

    • Search Google Scholar
    • Export Citation
  • Horie, H., , T. Iguchi, , H. Hanado, , H. Kuroiwa, , H. Okamoto, , and H. Kumagai, 2000: Development of a 95-GHz airborne cloud profiling radar (SPIDER): Technical aspects. IEICE Trans. Commun., E83-B, 20102020.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Nakajima, , A. P. Khain, , K. Saito, , T. Takemura, , and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., , and K. Saito, 1991: Description of a non-hydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_28/28_en.html.]

  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , Y. Hagihara, , H. Miura, , and J. Schmetz, 2010: Comparison of high-level clouds represented in a global cloud-system resolving model with CALIPSO/CloudSat and geostationary satellite observations. J. Geophys. Res., 115, D00H22, doi:10.1029/2009JD012371.

    • Search Google Scholar
    • Export Citation
  • Ishimoto, H., 2008: Radar backscattering computations for fractal-shaped snowflakes. J. Meteor. Soc. Japan, 86, 459469.

  • Khain, A. P., , and I. L. Sednev, 1995: Simulation of hydrometeor size spectra evolution by water–water, ice–water and ice–ice interactions. Atmos. Res., 36, 107138, doi:10.1016/0169-8095(94)00030-H.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , M. Ovtchinnikov, , M. Pinsky, , A. Plkrovsky, , and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, doi:10.1016/S0169-8095(00)00064-8.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., , A. Pokrovsky, , D. Rosenfeld, , U. Blahak, , and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, N., , T. Nakajima, , H. Kumagai, , H. Kuroiwa, , A. Kamei, , R. Nakamura, , and T. Y. Nakajima, 2006: Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations. J. Geophys. Res., 111, D07205, doi:10.1029/2005JD006363.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1987: A 94-GHz Doppler radar for cloud observations. J. Atmos. Oceanic Technol., 4, 3648.

  • Li, X., , W.-K. Tao, , T. Matsui, , C. Liu, , and H. Masunaga, 2010: Improving a spectral bin microphysics scheme using TRMM satellite observations. Quart. J. Roy. Meteor. Soc., 136, 382399, doi:10.1002/qj.569.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. H., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , R. Marchand, , Q. Zhang, , and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , G. G. Mace, , T. Ackerman, , and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., , J. Haynes, , G. Mace, , T. Ackerman, , and G. Stephens, 2009: A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J. Geophys. Res., 114, D00A20, doi:10.1029/2008JD009790.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , M. Satoh, , and H. Miura, 2008: A joint satellite and global cloud-resolving model analysis of a Madden–Julian oscillation event: Model diagnosis. J. Geophys. Res., 113, D17210, doi:10.1029/2008JD009986.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Coauthors, 2010: Satellite data simulator unit: A multisensor, multispectral satellite simulator package. Bull. Amer. Meteor. Soc., 91, 16251632.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., , B. W. Orr, , R. A. Kropfli, , and J. B. Snider, 1994: Retrieval of vertical profiles of cirrus cloud microphysical parameters from Doppler radar and infrared radiometer measurements. J. Appl. Meteor., 33, 617626.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., 2002: Information content of the 95-GHz cloud radar signals: Theoretical assessment of effects of nonsphericity and error evaluations of the discrete dipole approximation. J. Geophys. Res., 107, 4628, doi:10.1029/2001JD001386.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., , S. Iwasaki, , M. Yasui, , H. Horie, , H. Kuroiwa, , and H. Kumagai, 2003: An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar. J. Geophys. Res., 108, 4226, doi:10.1029/2001JD001225.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2007: Vertical cloud structure observed from shipborne radar and lidar: Midlatitude case study during the MR01/K02 cruise of the research vessel Mirai. J. Geophys. Res., 112, D08216, doi:10.1029/2006JD007628.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., and Coauthors, 2008: Vertical cloud properties in the tropical western Pacific Ocean: Validation of the CCSR/NIES/FRCGC GCM by shipborne radar and lidar. J. Geophys. Res., 113, D24213, doi:10.1029/2008JD009812.

    • Search Google Scholar
    • Export Citation
  • Okamoto, H., , K. Sato, , and Y. Hagihara, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. J. Geophys. Res., 115, D22209, doi:10.1029/2009JD013383.

    • Search Google Scholar
    • Export Citation
  • Orr, B. W., , and R. A. Kropfli, 1999: A method for estimating particle fall velocities from vertically pointing Doppler radar. J. Atmos. Oceanic Technol., 16, 2937.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 914 pp.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298.

  • Saito, K., , J. Ishida, , K. Aranami, , T. Hara, , T. Segawa, , M. Narita, , and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , and H. Okamoto, 2006: Characterization of Ze and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals. J. Geophys. Res., 111, D22213, doi:10.1029/2005JD006959.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , H. Okamoto, , M. K. Yamamoto, , S. Fukao, , H. Kumagai, , Y. Ohno, , H. Horie, , and M. Abo, 2009: 95-GHz Doppler radar and lidar synergy for simultaneous ice microphysics and in-cloud vertical air motion retrieval. J. Geophys. Res., 114, D03203, doi:10.1029/2008JD010222.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Inoue, , and H. Miura, 2010: Evaluations of cloud properties of global and local cloud-system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., , and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793, doi:10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Stephens, G. L., and Coauthors, 2008: The CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, N., , I. Matsui, , A. Shimizu, , I. Uno, , K. Asai, , T. Endoh, , and T. Nakajima, 2002: Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai. Geophys. Res. Lett., 29, 1901, doi:10.1029/2002GL015112.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., , T. Nozawa, , S. Emori, , T. Y. Nakajima, , and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., , S. L. Durden, , E. Imm, , K. Pak, , D. Reinke, , P. Partain, , J. Haynes, , and R. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., , and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 8
PDF Downloads 44 44 8

Evaluation of Cloud Microphysics in JMA-NHM Simulations Using Bin or Bulk Microphysical Schemes through Comparison with Cloud Radar Observations

View More View Less
  • 1 * Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
  • | 2 Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
  • | 4 Department of Atmospheric Sciences, Institute of the Earth Science, The Hebrew University of Jerusalem, Jerusalem, Israel
  • | 5 Meteorological Research Institute, Tsukuba, Japan
  • | 6 ** Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
  • | 7 National Institute for Environmental Studies, Tsukuba, Japan
© Get Permissions
Restricted access

Abstract

Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency Nonhydrostatic Model (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborne W-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separately for an intercomparative study. A radar product simulator that is compatible with both microphysics schemes is developed to enable a direct comparison between simulation and observation with respect to the equivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). In general, the bin model simulation shows better agreement with the observed data than the bulk model simulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves the result of the bin model simulation. The results indicate that there are substantial uncertainties in the mass–size and size–terminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snow aloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominance of snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows that a correction for the fall velocity of hydrometeors considering a change of particle size should be introduced even in single-moment bulk cloud microphysics.

Corresponding author address: Takamichi Iguchi, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: takamichi.iguchi@nasa.gov

Abstract

Numerical weather prediction (NWP) simulations using the Japan Meteorological Agency Nonhydrostatic Model (JMA-NHM) are conducted for three precipitation events observed by shipborne or spaceborne W-band cloud radars. Spectral bin and single-moment bulk cloud microphysics schemes are employed separately for an intercomparative study. A radar product simulator that is compatible with both microphysics schemes is developed to enable a direct comparison between simulation and observation with respect to the equivalent radar reflectivity factor Ze, Doppler velocity (DV), and path-integrated attenuation (PIA). In general, the bin model simulation shows better agreement with the observed data than the bulk model simulation. The correction of the terminal fall velocities of snowflakes using those of hail further improves the result of the bin model simulation. The results indicate that there are substantial uncertainties in the mass–size and size–terminal fall velocity relations of snowflakes or in the calculation of terminal fall velocity of snow aloft. For the bulk microphysics, the overestimation of Ze is observed as a result of a significant predominance of snow over cloud ice due to substantial deposition growth directly to snow. The DV comparison shows that a correction for the fall velocity of hydrometeors considering a change of particle size should be introduced even in single-moment bulk cloud microphysics.

Corresponding author address: Takamichi Iguchi, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: takamichi.iguchi@nasa.gov
Save