• Arnaud, Y., , M. Desbois, , and J. Maizi, 1992: Automatic tracking and characterization of African convective systems on Meteosat pictures. J. Appl. Meteor., 31, 443453.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-K., , K. P. Bowman, , and G. R. North, 2004: Equatorial waves including the Madden–Julian oscillation in TRMM rainfall and OLR data. J. Climate, 17, 43874406.

    • Search Google Scholar
    • Export Citation
  • Deans, S. R., 1983: The Radon Transform and Some of Its Applications. John Wiley & Sons, 295 pp.

  • Dias, J., , and O. Pauluis, 2011: Modulations of the phase speed of convectively coupled Kelvin waves by the ITCZ. J. Atmos. Sci., 68, 14461459.

    • Search Google Scholar
    • Export Citation
  • Fu, R., , A. D. Del Genio, , and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 11291152.

    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., , and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113, 647658.

  • Haertel, P. T., , and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721.

  • Hayashi, Y., 1974: Spectral analysis of tropical disturbances appearing in a GFDL general circulation model. J. Atmos. Sci., 31, 180218.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., , D. W. Chappell, , G. J. Robinson, , and G. Yang, 2000: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J. Atmos. Oceanic Technol., 17, 12961312.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , J. Gottschalck, , L. M. V. Carvalho, , and W. Higgins, 2011: Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332350.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden–Julian oscillation. J. Climate, 23, 38143834.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., , M.-I. Lee, , D. Kim, , I.-S. Kang, , and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 32343260.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , W. B. Rossow, , R. L. Guedes, , and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416.

  • Mapes, B. E., , S. N. Tulich, , T. Nasuno, , and M. Satoh, 2008: Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteor. Soc. Japan, 86A, 175185.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , T. S. L’Ecuyer, , and C. D. Kummerow, 2006: The Madden–Julian oscillation recorded in early observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63, 27772794.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , and L. M. Gribble-Verhagen, 2010: Variations in the flow of the global atmosphere associated with a composite convectively coupled oceanic Kelvin wave. J. Climate, 23, 41924201.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., , J. Molinari, , and K. I. Mohr, 2011: Attributing tropical cyclogenesis to equatorial waves in the western North Pacific. J. Atmos. Sci., 68, 195209.

    • Search Google Scholar
    • Export Citation
  • Siqueira, J. R., , W. B. Rossow, , L. A. T. Machado, , and C. Pearl, 2005: Structural characteristics of convective systems over South America related to cold-frontal incursions. Mon. Wea. Rev., 133, 10451064.

    • Search Google Scholar
    • Export Citation
  • Skok, G., , J. Tribbia, , J. Rakovec, , and B. Brown, 2009: Object-based analysis of satellite-derived precipitation systems over the low- and midlatitude Pacific Ocean. Mon. Wea. Rev., 137, 31963218.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and G. N. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems propagate westward? J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , W. Stern, , S. Schubert, , and K. M. Lau, 2003: Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 129, 28972925.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Williams, M., , and R. A. Houze, 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , B. Hoskins, , and J. Slingo, 2007: Convectively coupled equatorial waves. Part II: Propagation characteristics. J. Atmos. Sci., 64, 34243437.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , M. W. Moncrieff, , X. Wu, , and M. Yamada, 2001a: Wavelet analysis of simulated tropical convective cloud systems. Part I: Basic analysis. J. Atmos. Sci., 58, 850867.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , M. W. Moncrieff, , X. Wu, 2001b: Wavelet analysis of simulated tropical convective cloud systems. Part II: Decomposition of convective-scale and mesoscale structure. J. Atmos. Sci., 58, 868876.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 2
PDF Downloads 39 39 2

An Object-Based Approach to Assessing the Organization of Tropical Convection

View More View Less
  • 1 Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 CIRES, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 3 Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The organization of tropical convection is assessed through an object-based analysis of satellite brightness temperature data Tb, a proxy for convective activity. The analysis involves the detection of contiguous cloud regions (CCRs) in the three-dimensional space of latitude, longitude, and time where Tb falls below a given threshold. A range of thresholds is considered and only CCRs that satisfy a minimum size constraint are retained in the analysis. Various statistical properties of CCRs are documented including their zonal speed of propagation, which is estimated using a Radon transformation technique. Consistent with previous studies, a majority of CCRs are found to propagate westward, typically at speeds of around 15 m s−1, regardless of underlying Tb threshold. Most of these zonally propagating CCRs have lifetimes less than 2 days and zonal widths less than 800 km, implying aggregation of just a few individual mesoscale convective systems. This object-based perspective is somewhat different than that obtained in previous Fourier-based analyses, which primarily emphasize the organization of convection on synoptic and planetary scales via wave–convection coupling. To reconcile these contrasting views, an object-based data reconstruction is developed that objectively demonstrates how the spectral peaks of synoptic- to planetary-scale waves can be attributed to the organization of CCRs into larger-scale wave envelopes. A novel method based on the randomization of CCRs in physical space leads to an empirical background spectrum for organized tropical convection that does not rely on any smoothing in spectral space. Normalization by this background reveals spectral peaks associated with synoptic- and planetary-scale waves that are consistent with previous studies.

Corresponding author address: Juliana Dias, NOAA/ESRL R/PSD1, 325 Broadway, Boulder, CO 80309. E-mail: juliana.dias@noaa.gov

Abstract

The organization of tropical convection is assessed through an object-based analysis of satellite brightness temperature data Tb, a proxy for convective activity. The analysis involves the detection of contiguous cloud regions (CCRs) in the three-dimensional space of latitude, longitude, and time where Tb falls below a given threshold. A range of thresholds is considered and only CCRs that satisfy a minimum size constraint are retained in the analysis. Various statistical properties of CCRs are documented including their zonal speed of propagation, which is estimated using a Radon transformation technique. Consistent with previous studies, a majority of CCRs are found to propagate westward, typically at speeds of around 15 m s−1, regardless of underlying Tb threshold. Most of these zonally propagating CCRs have lifetimes less than 2 days and zonal widths less than 800 km, implying aggregation of just a few individual mesoscale convective systems. This object-based perspective is somewhat different than that obtained in previous Fourier-based analyses, which primarily emphasize the organization of convection on synoptic and planetary scales via wave–convection coupling. To reconcile these contrasting views, an object-based data reconstruction is developed that objectively demonstrates how the spectral peaks of synoptic- to planetary-scale waves can be attributed to the organization of CCRs into larger-scale wave envelopes. A novel method based on the randomization of CCRs in physical space leads to an empirical background spectrum for organized tropical convection that does not rely on any smoothing in spectral space. Normalization by this background reveals spectral peaks associated with synoptic- and planetary-scale waves that are consistent with previous studies.

Corresponding author address: Juliana Dias, NOAA/ESRL R/PSD1, 325 Broadway, Boulder, CO 80309. E-mail: juliana.dias@noaa.gov
Save