Thermodynamic Aspects of Tropical Cyclone Formation

Zhuo Wang Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The thermodynamic aspects of tropical cyclone (TC) formation near the center of the wave pouch, a region of approximately closed Lagrangian circulation within the wave critical layer, are examined through diagnoses of a high-resolution numerical simulation and dropsonde data from a recent field campaign. It is found that the meso-β area near the pouch center is characterized by high saturation fraction, small difference in equivalent potential temperature θe between the surface and the middle troposphere, and a short incubation time scale. Updrafts tend to be more vigorous in this region, presumably because of reduced dry air entrainment, while downdrafts are not suppressed. The thermodynamic conditions near the pouch center are thus critically important for TC formation.

The balanced responses to convective and stratiform heating at the pregenesis stage are examined using the Sawyer–Eliassen equation. Deep convection is concentrated near the pouch center. The strong radial and vertical gradients of latent heat release effectively force the transverse circulation and spin up a surface protovortex near the pouch center. Stratiform heating induces modest midlevel inflow and very weak low-level outflow, which contributes to the midlevel spinup without substantially spinning down the low-level circulation.

The analysis of dropsonde data shows that the midlevel θe increases significantly near the pouch center one to two days prior to genesis but changes little away from the pouch center. This may indicate convective organization and the impending TC genesis. It also suggests that the critical information of TC genesis near the pouch center may be masked out if a spatial average is taken over the pouch scale.

Corresponding author address: Zhuo Wang, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801. E-mail: zhuowang@illinois.edu

Abstract

The thermodynamic aspects of tropical cyclone (TC) formation near the center of the wave pouch, a region of approximately closed Lagrangian circulation within the wave critical layer, are examined through diagnoses of a high-resolution numerical simulation and dropsonde data from a recent field campaign. It is found that the meso-β area near the pouch center is characterized by high saturation fraction, small difference in equivalent potential temperature θe between the surface and the middle troposphere, and a short incubation time scale. Updrafts tend to be more vigorous in this region, presumably because of reduced dry air entrainment, while downdrafts are not suppressed. The thermodynamic conditions near the pouch center are thus critically important for TC formation.

The balanced responses to convective and stratiform heating at the pregenesis stage are examined using the Sawyer–Eliassen equation. Deep convection is concentrated near the pouch center. The strong radial and vertical gradients of latent heat release effectively force the transverse circulation and spin up a surface protovortex near the pouch center. Stratiform heating induces modest midlevel inflow and very weak low-level outflow, which contributes to the midlevel spinup without substantially spinning down the low-level circulation.

The analysis of dropsonde data shows that the midlevel θe increases significantly near the pouch center one to two days prior to genesis but changes little away from the pouch center. This may indicate convective organization and the impending TC genesis. It also suggests that the critical information of TC genesis near the pouch center may be masked out if a spatial average is taken over the pouch scale.

Corresponding author address: Zhuo Wang, Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, IL 61801. E-mail: zhuowang@illinois.edu
Save
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053.

  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790.

  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39603968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and F. Zhang, 2010: Initial development and genesis of Hurricane Dolly (2008). J. Atmos. Sci., 67, 655672.

  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 662700.

  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana. J. Atmos. Sci., 61, 12091232.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713.

  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2010: Tropical-cyclone formation: Theory and idealized modelling. Proc. Seventh Int. Workshop on Tropical Cyclones, La Réunion, France, WMO, 2.1. [Available online at http://www.meteo.physik.uni-muenchen.de/~roger/Publications/IWTC-VII_topic_2.1.pdf.]

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., L. L. Lussier III, R. W. Moore, and Z. Wang, 2010a: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., Z. Wang, and T. J. Dunkerton, 2010b: Coarse, intermediate and high resolution numerical simulations of the transition of a tropical wave critical layer to a tropical storm. Atmos. Chem. Phys., 10, 10 80310 827.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) Experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: What is the trigger for tropical cyclogenesis? Aust. Meteor. Mag., 56, 241266.

  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative–convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898.

  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and C. López Carrillo, 2011: The vorticity budget of developing Typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147163, doi:10.5194/acp-11-147-2011.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. López Carrillo, and L. López Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, doi:10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561.

    • Search Google Scholar
    • Export Citation
  • Rutherford, B., and M. T. Montgomery, 2011: A Lagrangian analysis of a developing and non-developing disturbance observed during the PREDICT experiment. Atmos. Chem. Phys. Discuss.,11, 33 273–33 323.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583.

  • Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Smith, R. K., and M. T. Montgomery, 2012: Observations of the convective environment in developing and non-developing tropical disturbances. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.1910, in press.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673690.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994a: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994b: An idealized study of African easterly waves. II: A non-linear view. Quart. J. Roy. Meteor. Soc., 120, 9831015.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and M. T. Montgomery, 2006: Internal influences on tropical cyclone formation. Proc. Sixth Int. Workshop on Tropical Cyclones, San Jose, Costa Rica, WMO, 2.2.

  • Tory, K. J., and M. T. Montgomery, 2008: Tropical cyclone formation: A synopsis of the internal dynamics. Extended Abstracts, 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 10A.1. [Available online at http://ams.confex.com/ams/28Hurricanes/techprogram/paper_138062.htm.]

  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, 2nd ed. J. Chan and J. D. Kepert, Eds., World Scientific, 55–92.

  • Tyner, B. P., and A. Aiyyer, 2012: Evolution of African easterly waves in isentropic potential vorticity fields. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2009: A dynamically-based method for forecasting tropical cyclogenesis location in the Atlantic sector using global model products. Geophys. Res. Lett., 36, L03801, doi:10.1029/2008GL035586.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of Pre-Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of Pre-Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., T. J. Dunkerton, and M. T. Montgomery, 2012a: Application of the marsupial paradigm to tropical cyclone formation from northwestward propagating disturbances. Mon. Wea. Rev., 140, 6676.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and C. Fritz, 2012b: A first look at the structure of the wave pouch during the 2009 PREDICT-GRIP dry runs over the Atlantic. Mon. Wea. Rev., 4, 1144–1163.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183.

  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265274.

  • Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1214 346 39
PDF Downloads 1047 300 37