• Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., , and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the Pacific ITCZ. J. Climate, 18, 43174328.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., , I. Beau, , P. Bechtold, , J.-Y. Grandpeix, , J.-M. Piriou, , J.-L. Redelsperger, , and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340.

  • Emanuel, K. A., 1993: The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 17631775.

  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143.

    • Search Google Scholar
    • Export Citation
  • Firestone, J., , and B. A. Albrecht, 1986: The structure of the atmospheric boundary layer in the central equatorial Pacific during January and February of FGGE. Mon. Wea. Rev., 114, 22192231.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., , and D. J. Raymond, 2002: Large-scale modes of a nonrotating atmosphere with water vapor and cloud–radiation feedbacks. J. Atmos. Sci., 59, 16691679.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., , and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2008: Multi-cloud models for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65, 895914.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854.

  • Kuang, Z., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67, 941962.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , E. J. Zipser, , and B. S. Ferrier, 2000: Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci., 57, 23512373.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and M. G. Shefter, 2001a: Waves and instabilities for model tropical convective parameterizations. J. Atmos. Sci., 58, 896914.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and M. G. Shefter, 2001b: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58, 15671584.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , B. Khouider, , G. N. Kiladis, , K. H. Straub, , and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 21882205.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and S. K. Esbensen, 2005: A modeling study of summertime east Pacific wind-induced ocean–atmosphere exchange in the intraseasonal oscillation. J. Climate, 18, 568584.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543.

  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 18761894.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20, 501524, doi:10.1007/s00162-006-0034-x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and X. Zeng, 2005: Modeling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 13011320.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627640.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Raymond, D. J., , G. B. Raga, , C. S. Bretherton, , J. Molinari, , C. López-Carrillo, , and Ž. Fuchs, 2003: Convective forcing in the intertropical convergence zone of the eastern Pacific. J. Atmos. Sci., 60, 20642082.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and C. S. Bretherton, 2003: Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, 55A, 4560.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , S. E. Yuter, , C. S. Bretherton, , and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422444.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009a: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009b: The moisture mode in the quasi-equilibrium tropical circulation model. Part II: Nonlinear behavior on an equatorial β plane. J. Atmos. Sci., 66, 15251542.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , and B. E. Mapes, 2010: Transient environmental sensitivities of explicitly simulated tropical convection. J. Atmos. Sci., 67, 923940.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., , D. A. Randall, , and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 12101229.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , G. N. Kiladis, , and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., , and K. A. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 1
PDF Downloads 7 7 0

Effects of Varying the Shape of the Convective Heating Profile on Convectively Coupled Gravity Waves and Moisture Modes

View More View Less
  • 1 Physics Department, Faculty of Science, University of Split, Split, Croatia, and Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, New Mexico
  • | 2 Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, New Mexico
© Get Permissions
Restricted access

Abstract

The analytical model of convectively coupled gravity waves and moisture modes of Raymond and Fuchs is extended to the case of top-heavy and bottom-heavy convective heating profiles. Top-heavy heating profiles favor gravity waves, while bottom-heavy profiles support moisture modes. The latter behavior results from the sensitivity of moisture modes to the gross moist stability, which is more negative with bottom-heavy heating.

A numerical implementation of the analytical model allows calculations in the two-dimensional nonrotating case as well as on a three-dimensional equatorial beta plane. In the two-dimensional case the analytical and numerical models are mostly in agreement, although minor discrepancies occur. In three dimensions the gravity modes become equatorial Kelvin waves whereas the moisture modes are more complex and require further investigation.

Corresponding author address: Željka Fuchs, Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801. E-mail: zeljka@kestrel.nmt.edu

Abstract

The analytical model of convectively coupled gravity waves and moisture modes of Raymond and Fuchs is extended to the case of top-heavy and bottom-heavy convective heating profiles. Top-heavy heating profiles favor gravity waves, while bottom-heavy profiles support moisture modes. The latter behavior results from the sensitivity of moisture modes to the gross moist stability, which is more negative with bottom-heavy heating.

A numerical implementation of the analytical model allows calculations in the two-dimensional nonrotating case as well as on a three-dimensional equatorial beta plane. In the two-dimensional case the analytical and numerical models are mostly in agreement, although minor discrepancies occur. In three dimensions the gravity modes become equatorial Kelvin waves whereas the moisture modes are more complex and require further investigation.

Corresponding author address: Željka Fuchs, Physics Department and Geophysical Research Center, New Mexico Institute of Mining and Technology, Socorro, NM 87801. E-mail: zeljka@kestrel.nmt.edu
Save