• Anderson, K., and Coauthors, 2004: The RED Experiment: An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull. Amer. Meteor. Soc., 85, 13551365.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2011a: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445.

  • Andreas, E. L, 2011b: The fallacy of drifting snow. Bound.-Layer Meteor., 141, 333347.

  • Andreas, E. L, , and G. Treviño, 2000: Comments on “A physical interpretation of von Kármán’s constant based on asymptotic considerations—A new value.” J. Atmos. Sci., 57, 11891192.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , P. O. G. Persson, , and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , P. O. G. Persson, , R. E. Jordan, , T. W. Horst, , P. S. Guest, , A. A. Grachev, , and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. J. Hydrometeor., 11, 87104.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., , W. Chen, , E. J. Walsh, , J. B. Jensen, , S. Lee, , and C. Fandry, 1999: The Southern Ocean Waves Experiment. Part I: Overview and mean results. J. Phys. Oceanogr., 29, 21302145.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1970: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Bell, M. M., 2010: Air–sea enthalpy and momentum exchange at major hurricane wind speeds. Ph.D. dissertation, Naval Postgraduate School, 133 pp.

  • Bendat, J. S., , and A. G. Piersol, 1971: Random Data: Analysis and Measurement Procedures. Wiley-Interscience, 407 pp.

  • Bianco, L., , J.-W. Bao, , C. W. Fairall, , and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes. J. Phys. Oceanogr., 15, 650669.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., , D. G. Vincent, , and W. L. Wood, 2001: A sea state parameterization with nonarbitrary wave age applicable to low and moderate wind speeds. J. Phys. Oceanogr., 31, 28402851.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., , J. C. Wyngaard, , and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36, 10411052.

    • Search Google Scholar
    • Export Citation
  • Chiang, T.-L., , C.-R. Wu, , and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233.

  • Crawford, T. L., , and R. J. Dobosy, 1992: A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound.-Layer Meteor., 59, 257278.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., 1991: Air–sea exchange of momentum, heat and water vapor over whitecap sea states. Ph.D. dissertation, University of Washington, 212 pp.

  • Donelan, M. A., , W. M. Drennan, , and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , H. C. Graber, , D. Hauser, , and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , P. K. Taylor, , and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848.

  • Drennan, W. M., , J. A. Zhang, , J. R. French, , C. McCormick, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115.

    • Search Google Scholar
    • Export Citation
  • Edson, J., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Faber, T. E., 1995: Fluid Dynamics for Physicists. Cambridge University Press, 440 pp.

  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., , and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332.

    • Search Google Scholar
    • Export Citation
  • Francis, J. R. D., 1954: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 80, 438443.

  • French, J. R., , W. M. Drennan, , J. A. Zhang, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102.

    • Search Google Scholar
    • Export Citation
  • Garman, K. E., and Coauthors, 2006: An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements. J. Atmos. Oceanic Technol., 23, 16961708.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Geernaert, G. L., 1990: Bulk parameterizations for the wind stress and heat flux. Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W. L. Plant, Eds., Kluwer, 91–172.

  • Grachev, A. A., , and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711.

  • Grachev, A. A., , C. W. Fairall, , J. E. Hare, , J. B. Edson, , and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , E. L Andreas, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 2007a: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315333.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , E. L Andreas, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 2007b: On the turbulent Prandtl number in the stable atmospheric boundary layer. Bound.-Layer Meteor., 125, 329341.

    • Search Google Scholar
    • Export Citation
  • Ingel, L. Kh., 2011: On the effect of spray on the dynamics of the marine atmospheric surface layer in strong winds. Izv. Atmos. Ocean. Phys., 47, 119127.

    • Search Google Scholar
    • Export Citation
  • Janssen, J. A. M., 1997: Does wind stress depend on sea-state or not?—A statistical error analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479503.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., , D. A. Mitchell, , D. W. Wang, , and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315, 17071709.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., , J. Højstrup, , H. J. Vested, , and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S. F., , and Y. Toba, Eds., 2001: Wind Stress over the Ocean. Cambridge University Press, 307 pp.

  • Khelif, D., , S. P. Burns, , and C. A. Friehe, 1999: Improved wind measurements on research aircraft. J. Atmos. Oceanic Technol., 16, 860875.

    • Search Google Scholar
    • Export Citation
  • Khelif, D., , C. A. Friehe, , H. Jonsson, , Q. Wang, , and K. Rados, 2005: Wintertime boundary-layer structure and air–sea interaction over the Japan/East Sea. Deep-Sea Res. II, 52, 15251546.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., , and Yu. A. Volkov, 1965: On the roughness parameter of the sea surface and the calculation of momentum flux in the near-water layer of the atmosphere. Izv. Atmos. Ocean. Phys., 1, 566574.

    • Search Google Scholar
    • Export Citation
  • Klipp, C. L., , and L. Mahrt, 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872103.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1968: What we do not know about the sea-surface wind stress. Bull. Amer. Meteor. Soc., 49, 247253.

  • Kraus, E. B., , and J. A. Businger, 1994: Atmosphere–Ocean Interaction. 2nd ed. Oxford University Press, 362 pp.

  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, doi:10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1986: Aircraft measurements in the boundary layer. Probing the Atmospheric Boundary Layer, D. H. Lenschow, Ed., Amer. Meteor. Soc., 39–55.

  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142.

  • Mahrt, L., , and D. Khelif, 2010: Heat fluxes over weak SST heterogeneity. J. Geophys. Res., 115, D11103, doi:10.1029/2009JD013161.

  • Mahrt, L., , D. Vickers, , P. Frederickson, , K. Davidson, , and A.-S. Smedman, 2003: Sea-surface aerodynamic roughness. J. Geophys. Res., 108, 3171, doi:10.1029/2002JC001383.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , E. L Andreas, , and D. Khelif, 2012: Sensible heat flux in near-neutral conditions over the sea. J. Phys. Oceanogr., 42, 11341142.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176.

  • Melville, W. K., 1977: Wind stress and roughness length over breaking waves. J. Phys. Oceanogr., 7, 702710.

  • Monin, A. S., , and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1. MIT Press, 769 pp.

  • Moon, I.-J., , T. Hara, , I. Ginis, , S. E. Belcher, , and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., , I. Ginis, , T. Hara, , and B. Thomas, 2007: A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev., 135, 28692878.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., , and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134.

    • Search Google Scholar
    • Export Citation
  • Neumann, G., 1956: Wind stress on water surfaces. Bull. Amer. Meteor. Soc., 37, 211217.

  • Neumann, G., , and W. J. Pierson Jr., 1966: Principles of Physical Oceanography. Prentice-Hall, 545 pp.

  • Nicholls, S., , and C. J. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105, 785802.

    • Search Google Scholar
    • Export Citation
  • Oost, W. A., , G. J. Komen, , C. M. J. Jacobs, , and C. Van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., , and J. A. Dutton, 1984: Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley and Sons, 397 pp.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , J. E. Hare, , C. W. Fairall, , and W. D. Otto, 2005: Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131, 877912.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , and I. A. Renfrew, 2009: Aircraft-based observations of air–sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 20302045.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , P. J. Vickery, , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Roll, H. U., 1965: Physics of the Marine Atmosphere. Academic Press, 426 pp.

  • Romero, L., , and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465.

    • Search Google Scholar
    • Export Citation
  • Rutgersson, A., , A.-S. Smedman, , and U. Högström, 2001: Use of conventional stability parameters during swell. J. Geophys. Res., 106, 27 11727 134.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., , J. F. Price, , J. B. Girton, , and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, doi:10.1029/2007GL029679.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., , M. Pinsky, , and A. Khain, 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., , M. Tjernström, , and U. Högström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: A case study. J. Atmos. Sci., 51, 33993411.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709726.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109142.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., , and R. Lukas, 2010: Effects of bubbles and sea spray on air-sea exchange in hurricane conditions. Bound.-Layer Meteor., 136, 365376.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer, 666 pp.

  • Sun, J., , J. F. Howell, , S. K. Esbensen, , L. Mahrt, , C. M. Greb, , R. Grossman, , and M. A. LeMone, 1996: Scale dependence of air–sea fluxes over the western equatorial Pacific. J. Atmos. Sci., 53, 29973012.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , D. Vandemark, , L. Mahrt, , D. Vickers, , T. Crawford, , and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 448.

    • Search Google Scholar
    • Export Citation
  • Sutton, O. G., 1953: Micrometeorology. McGraw-Hill, 333 pp.

  • Sverdrup, H. U., , M. W. Johnson, , and R. H. Fleming, 1942: The Oceans. Prentice-Hall, 1087 pp.

  • Toba, Y., , S. D. Smith, , and N. Ebuchi, 2001: Historical drag expressions. Wind Stress over the Ocean, I. S. F. Jones and Y. Toba, Eds., Cambridge University Press, 35–53.

  • von Arx, W. S., 1967: An Introduction to Physical Oceanography. Addison-Wesley, 422 pp.

  • Wieringa, J., 1993: Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteor., 63, 323363.

  • Wilson, B. W., 1960: Note on surface wind stress over water at low and high wind speeds. J. Geophys. Res., 65, 33773382.

  • Wu, J., 1969: Wind stress and surface roughness at air-sea interface. J. Geophys. Res., 74, 444455.

  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—a revisit. J. Phys. Oceanogr., 10, 727740.

  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhang, J. A., , W. M. Drennan, , P. G. Black, , and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1969: On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus, 21, 1724.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 22
PDF Downloads 120 120 21

A New Drag Relation for Aerodynamically Rough Flow over the Ocean

View More View Less
  • 1 NorthWest Research Associates, Inc., Lebanon, New Hampshire
  • | 2 NorthWest Research Associates, Inc., Corvallis, Oregon
  • | 3 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

From almost 7000 near-surface eddy-covariance flux measurements over the sea, the authors deduce a new air–sea drag relation for aerodynamically rough flow:
eq1
Here u* is the measured friction velocity, and UN10 is the neutral-stability wind speed at a reference height of 10 m. This relation is fitted to UN10 values between 9 and 24 m s−1. A drag relation formulated as u* versus UN10 has several advantages over one formulated in terms of . First, the multiplicative coefficient on UN10 has smaller experimental uncertainty than do determinations of CDN10. Second, scatterplots of u* versus UN10 are not ill posed when UN10 is small, as plots of CDN10 are; u*UN10 plots presented here suggest aerodynamically smooth scaling for small UN10. Third, this relation depends only weakly on Monin–Obukhov similarity theory and, consequently, reduces the confounding effects of artificial correlation. Finally, with its negative intercept, the linear relation produces a CDN10 function that naturally rolls off at high wind speed and asymptotically approaches a constant value of 3.40 × 10−3. Hurricane modelers and the air–sea interaction community have been trying to rationalize such behavior in the drag coefficient for at least 15 years. This paper suggests that this rolloff in CDN10 results simply from known processes that influence wind–wave coupling.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. E-mail: eandreas@nwra.com

Abstract

From almost 7000 near-surface eddy-covariance flux measurements over the sea, the authors deduce a new air–sea drag relation for aerodynamically rough flow:
eq1
Here u* is the measured friction velocity, and UN10 is the neutral-stability wind speed at a reference height of 10 m. This relation is fitted to UN10 values between 9 and 24 m s−1. A drag relation formulated as u* versus UN10 has several advantages over one formulated in terms of . First, the multiplicative coefficient on UN10 has smaller experimental uncertainty than do determinations of CDN10. Second, scatterplots of u* versus UN10 are not ill posed when UN10 is small, as plots of CDN10 are; u*UN10 plots presented here suggest aerodynamically smooth scaling for small UN10. Third, this relation depends only weakly on Monin–Obukhov similarity theory and, consequently, reduces the confounding effects of artificial correlation. Finally, with its negative intercept, the linear relation produces a CDN10 function that naturally rolls off at high wind speed and asymptotically approaches a constant value of 3.40 × 10−3. Hurricane modelers and the air–sea interaction community have been trying to rationalize such behavior in the drag coefficient for at least 15 years. This paper suggests that this rolloff in CDN10 results simply from known processes that influence wind–wave coupling.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. E-mail: eandreas@nwra.com
Save