Energy Dispersion in African Easterly Waves

Michael Diaz Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Michael Diaz in
Current site
Google Scholar
PubMed
Close
and
Anantha Aiyyer Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Anantha Aiyyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. It is suggested that these results are also relevant to AEW intermittency and storm-track structure.

Corresponding author address: Anantha Aiyyer, Campus Box 8208, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: aaiyyer@ncsu.edu

Abstract

The existence of an upstream (eastward) group velocity for African easterly waves (AEWs) is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. It is suggested that these results are also relevant to AEW intermittency and storm-track structure.

Corresponding author address: Anantha Aiyyer, Campus Box 8208, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695. E-mail: aaiyyer@ncsu.edu
Save
  • Berry, G. J., and C. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752–766.

  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 77–90.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716–726.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 2038–2053.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999–1015.

  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183.

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159–172.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., 2006: Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991 2000. Mon. Wea. Rev., 134, 3539–3566.

    • Search Google Scholar
    • Export Citation
  • Cornforth, R. J., B. J. Hoskins, and C. D. Thorncroft, 2009: The impact of moist processes on the African easterly jet–African easterly wave system. Quart. J. Roy. Meteor. Soc., 135, 894–913, doi:10.1002/qj.414.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2000: Climatology of sign reversals of the meridional potential vorticity gradient over Africa and Australia. Mon. Wea. Rev., 128, 3890–3900.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. J. Holland, and P. J. Webster, 2010: The role of wave energy accumulation in tropical cyclogenesis over the tropical North Atlantic. Climate Dyn., 36, 753–767.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587–5646.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 2231–2245.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 1311–1327.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421–440.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversals of the potential vorticity gradient. J. Atmos. Sci., 65, 2130–2151.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 2212–2230.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in the northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035–1050.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., and N. M. J. Hall, 2009: On the relationship between African easterly waves and the African easterly jet. J. Atmos. Sci., 66, 2303–2316.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. M. J. Hall, and G. N. Kiladis, 2010: A climatological study of transient–mean-flow interactions over West Africa. Quart. J. Roy. Meteor. Soc., 136, 397–410, doi:10.1002/qj.474.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., N. M. J. Hall, and G. N. Kiladis, 2011: Intermittent African easterly wave activity in a dry atmospheric model: Influence of the extratropics. J. Climate, 24, 5378–5396.

    • Search Google Scholar
    • Export Citation
  • Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 3289–3311.

  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 5405–5421.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42, 1355–1368.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and R. J. Lefevre, 1996: Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough. J. Atmos. Sci., 53, 3120–3142.

    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334–342.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 1972–1998.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1993: A case of downstream baroclinic development over western North America. Mon. Wea. Rev., 121, 2929–2950.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605–628, doi:10.1034/j.1600-0870.1995.00108.x.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., L. A. Avilla, and J.-G. Jiing, 1998: Atlantic tropical systems of 1994 and 1995: A comparison of a quiet season to a near-record-breaking one. Mon. Wea. Rev., 126, 1106–1123.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 2266–2280.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G., 1949: Dispersion of planetary waves in a barotropic atmosphere. Tellus, 1, 54–58.

  • Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 1239–1254.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953–982, doi:10.1002/qj.49712051809.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763–786, doi:10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 3596–3607.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 2704–2722.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H.-R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803–829.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 104 24
PDF Downloads 296 66 5