Indications of Stratified Turbulence in a Mechanistic GCM

Sebastian Brune Leibniz-Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany

Search for other papers by Sebastian Brune in
Current site
Google Scholar
PubMed
Close
and
Erich Becker Leibniz-Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany

Search for other papers by Erich Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The horizontal kinetic energy spectrum and its budget are analyzed on the basis of a general circulation model with simplistic parameterizations of radiative and latent heating. A spectral truncation at total wavenumber 330 is combined with a level spacing of either ~200 m or ~1.5 km from the midtroposphere to the lower stratosphere. The subgrid-scale parameterization consists of a Smagorinsky-type anisotropic diffusion scheme that is scaled by a Richardson criterion for dynamic instability and combined with a stress-tensor-based hyperdiffusion that acts only on the very smallest resolved scales. Simulations with both vertical resolutions show a transition from the synoptic −3 to the mesoscale slope in the upper-tropospheric kinetic energy spectrum. Analysis of the spectral budget indicates that the mesoscale slope can be interpreted as stratified turbulence, as has been proposed in recent works of Lindborg and others, only when a high vertical resolution is applied. In this case, the mesoscale kinetic energy around 300–150 hPa is dominated by the nonrotational flow, and the forward horizontal energy cascade is accompanied by an equally strong forward spectral flux due to adiabatic conversion. This adiabatic conversion mainly results from a vertical potential energy flux that originates in the midtroposphere, where the mesoscale adiabatic conversion is negative. For a conventionally coarse vertical resolution, however, the mesoscale slope in the troposphere is dominated by the rotational flow, and the spectral flux due to adiabatic conversion is not comparable to that associated with horizontal advection.

Current affiliation: Institute of Oceanography, University of Hamburg, Hamburg, Germany.

Corresponding author address: Erich Becker, Leibniz-Institute of Atmospheric Physics, University of Rostock, Schlossstraβe 6, D-18225 Kühlungsborn, Germany. E-mail: becker@iap-kborn.de

Abstract

The horizontal kinetic energy spectrum and its budget are analyzed on the basis of a general circulation model with simplistic parameterizations of radiative and latent heating. A spectral truncation at total wavenumber 330 is combined with a level spacing of either ~200 m or ~1.5 km from the midtroposphere to the lower stratosphere. The subgrid-scale parameterization consists of a Smagorinsky-type anisotropic diffusion scheme that is scaled by a Richardson criterion for dynamic instability and combined with a stress-tensor-based hyperdiffusion that acts only on the very smallest resolved scales. Simulations with both vertical resolutions show a transition from the synoptic −3 to the mesoscale slope in the upper-tropospheric kinetic energy spectrum. Analysis of the spectral budget indicates that the mesoscale slope can be interpreted as stratified turbulence, as has been proposed in recent works of Lindborg and others, only when a high vertical resolution is applied. In this case, the mesoscale kinetic energy around 300–150 hPa is dominated by the nonrotational flow, and the forward horizontal energy cascade is accompanied by an equally strong forward spectral flux due to adiabatic conversion. This adiabatic conversion mainly results from a vertical potential energy flux that originates in the midtroposphere, where the mesoscale adiabatic conversion is negative. For a conventionally coarse vertical resolution, however, the mesoscale slope in the troposphere is dominated by the rotational flow, and the spectral flux due to adiabatic conversion is not comparable to that associated with horizontal advection.

Current affiliation: Institute of Oceanography, University of Hamburg, Hamburg, Germany.

Corresponding author address: Erich Becker, Leibniz-Institute of Atmospheric Physics, University of Rostock, Schlossstraβe 6, D-18225 Kühlungsborn, Germany. E-mail: becker@iap-kborn.de
Save
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131, 508520.

  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol. Terr. Phys., 66, 683696.

  • Becker, E., 2009: Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci., 66, 647666.

  • Becker, E., and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135, 14391454.

  • Berner, J., G. Shutts, and T. P. M. Leutbecher, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626.

    • Search Google Scholar
    • Export Citation
  • Billant, P., and J.-M. Chomaz, 2000: Experimental evidence for a new instability of a vertical columnar vortex pair in a strongly stratified fluid. J. Fluid Mech., 418, 167188.

    • Search Google Scholar
    • Export Citation
  • Billant, P., and J.-M. Chomaz, 2001: Self-similarity of strongly stratified inviscid flows. Phys. Fluids, 13, 1645.

  • Boer, G., and T. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164184.

  • Cho, J. Y. N., and Coauthors, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res., 104 (D5), 56975716.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954.

  • Germano, M., U. Piomelli, P. Moin, and W. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3, 1760.

  • Gkioulekas, E., and K. K. Tung, 2006: Recent developments in understanding two dimensional turbulence and the Nastrom-Gage spectrum. J. Low Temp. Phys., 145, 2557.

    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., and K. K. Tung, 2007: Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence? Discrete Contin. Dyn. Syst., 7B, 293314.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence (in Russian). Dokl. Adad. Nauk SSSR, 32, 16–18.

  • Körnich, H., G. Schmitz, and E. Becker, 2006: The role of stationary waves in the maintenance of the northern annular mode as deduced from model experiments. J. Atmos. Sci., 63, 29312947.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., B. A. Boville, K. Hamilton, E. Manzini, and K. Shibata, 1999a: Kinetic energy spectrum of horizontal motions in middle-atmosphere models. J. Geophys. Res., 104 (D22), 27 17727 190.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., K. Hamilton, and J. D. Mahlmann, 1999b: Simulation of the κ−5/3 mesoscale spectral regime in the GFDL SKYHI general circulation model. Geophys. Res. Lett., 26, 843846.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423.

  • Lilly, D. K., 1969: Numerical simulation of two-dimensional turbulence. Phys. Fluids, 12, II–240II–249.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761.

  • Lilly, D. K., G. Basset, K. Droegemeier, and P. Bartello, 1998: Stratified turbulence in the atmospheric mesoscales. Theor. Comput. Fluid Dyn., 11, 139153.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242.

  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2009: Two comments on the surface quasigeostrophic model for the atmospheric energy spectrum. J. Atmos. Sci., 66, 10691072.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., 1973: Wave-mean flow interaction in the upper atmosphere. Bound.-Layer Meteor., 4, 327343.

  • Lindzen, R., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167.

  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. WMO Monogr., Vol. 218. World Meteorological Organization, 161 pp.

  • Molemaker, J. M., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G., K. Gage, and W. Jasperson, 1984: Kinetic energy spectrum of large- and mesoscale atmospheric processes. Nature, 310, 3638.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Shaw, T. A., and E. Becker, 2011: Comments on “A spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves.” J. Atmos. Sci., 68, 24652469.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., and D. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164.

  • Smith, K. S., 2004: Comments on “The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation.” J. Atmos. Sci., 61, 937942.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Tulloch, 2009: Reply. J. Atmos. Sci., 66, 10731076.

  • Straus, D., and P. Ditlevsen, 1999: Two-dimensional turbulence properties of the ECMWF reanalyses. Tellus, 51A, 749772.

  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett.,33, L12812, doi:10.1029/2006GL026429.

  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Vallis, G. K., G. J. Shutts, and M. E. B. Gray, 1997: Balanced mesoscale motion and stratified turbulence forced by convection. Quart. J. Roy. Meteor. Soc., 123, 16211652.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. J. Fluid Mech., 517, 281308.

  • Watanabe, S., Y. Kawatani, Y. Tomikawa, K. Miyazaki, M. Takahashi, and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res.,113, D12110, doi:10.1029/2008JD010026.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 91 14
PDF Downloads 337 47 3